Conformal invariance IN (gauge) quantum field theory

  • I.T. Todorov
Group theory Parallel Session
Part of the Lecture Notes in Physics book series (LNP, volume 153)


The talk is meant as a brief up-to-date review of conformal Quantum Field Theory (QFT) including a preliminary report on a work in progress on conformal invariance in Quantum Electrodynamics (QED).


Conformal Invariance Operator Product Expansion Quantum Electrodynamic Conformal Vector Invariant Quantum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Mack, Abdus Salam: Finite component field representations of the conformal group. Ann. Phys. (N.Y.) 53, 174 (1969)Google Scholar
  2. [2]
    M. Plato, J. Simon, D. Sternheimer: Conformal covariance of field equations. Ann. Phys. (N.Y.) 61, 78 (1970)Google Scholar
  3. [3]
    D.J. Gross, J. Wess: Scale invariance and the high energy behaviour of scattering amplitude. Phys. Rev. D 2, 753 (1970)Google Scholar
  4. [4]
    A.M. Polyakov: Conformal symmetry of crucial fluctuations. Zh. Eksp. Teor, Piz., Pis. Red. 12, 538 (1970) (Engl. transl. JETP Lett. 12, 381 (1970))Google Scholar
  5. [5]
    A.A. Migdal: Conformal invariance and bootstrap. Phys. Letters 37 B, 386 (1971)Google Scholar
  6. [6]
    G. Parisi, L. Peliti: Calculation of critical indices, Lett. Nuovo, Cim. 2, 627 (1971)Google Scholar
  7. [7]
    G. Mack, I.T. Todorov: Conformal invariant Green functions without ultraviolet divergences. Phys. Rev. D 8, 1764 (1973)Google Scholar
  8. [8]
    G. Mack: Group theoretical approach in conformal invariant Quantum Field Theory, in Renormalization and Invariance in Quantum Field Theory, ed. by Caianiello (Plenum Press, N.Y. 1974) pp. 123–157; see also S. Ferrara, R. Gatto, A. Grillo, G. Parisi: General consequences of conformal algebra (as well as earlier work of Ferrara et al. cited there) and G. Mack: Conformal invariant Quantum Field Theory, in: Scale and Conformal Symmetry in Hadron Physics, ed. R. Gatto (Wiley, N. Y. 1973) pp. 59–108 and 109–130Google Scholar
  9. [9]
    A. M. Polyakov: Nonhamiltonian approach in the conformal invariant Quantum Field Theory. Zh. Eksp.Teor. Fiz. 66, 23 (1974) (Engl. transl. JETP 39, 10 (1974))Google Scholar
  10. [10]
    V.K. Dobrev, V.B. Petkova, S.G. Petrova, I.T. Todorov: Dynamical derivation of vacuum operator product expansion in Euclidean conformal Quantum Field Theory. Phys. Rev. D 13, 887 (1976)Google Scholar
  11. [11]
    V.K. Dobrev, G. Mack, V.B. Petkova, S.G. Petrova, I.T. Todorov: Harmonic Analysis on the n-Dimensional Lorentz Group and its Application to Conformal Quantum Field Theory Lecture Notes in Physics, 63, (Springer-Verlag, Berlin 1977)Google Scholar
  12. [12]
    I.T. Todorov, M.C. Mintchev, V.B. Petkova: Conformal Invariance in Quantum Field Theory. (Scuola Normale Superiore, Pisa 1978)Google Scholar
  13. [13]
    E.S. Fradkin, M. Ya. Palchik: Recent developments in conformal invariant QFT. Phys. Reports 44 C, 249 (1978)Google Scholar
  14. [14]
    E.S. Fradkin, M. Ya. Palchik, V.N. Zaikin: Calculation on anomalous dimensions in conformally invariant Field Theory. J. Phys. A. Math. Gen. 13, 3429 (1980)Google Scholar
  15. [15]
    M.Ya. Palchik: Problems of dynamics in conformal invariant Field Theory. Proceedings of the IIId School on Elementary Particles and High Energy Physics in Primorsko, Bulgaria 1977 (Sofia 1978) pp. 240–258Google Scholar
  16. [16]
    M.Ya. Palchik: On the operator product jμ (x) ϕ (x) in the Thirring model. Short Commun. in Physics, No. 4 (Lebedev Phys. Institute, Moscow 1980) (in Russian)Google Scholar
  17. [17]
    M. Mintchev, V. Petkova, I. Todorov: Scale and conformal covariance in Quantum Electrodynamics. Rep. Math. Phys. 9, 355 (1976) (For a slightly revised and extended version see chapter VII of ref. [12].)Google Scholar
  18. [18]
    D. Zwanziger: Lesson of a soluble model of Quantum Electrodynamics. Phys. Rev. D 17, 457 (1978)Google Scholar
  19. [19]
    V.K. Dobrev, V.B. Petkova: Elementary representations and intertwining operators for SU*(4) Rep. Math. Phys. 13, 233 (1978)Google Scholar
  20. [20]
    G. Mack: All unitary ray representations of the conformal group SU(2,2) with positive energy. Commun. Math. Phys. 55 1 (1977)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • I.T. Todorov
    • 1
  1. 1.Fakultät für PhysikUniversität BielefeldBielefeld 1

Personalised recommendations