Scattering theory and automorphic functions

  • Gilles Lachaud
Group Theory Parallel Session
Part of the Lecture Notes in Physics book series (LNP, volume 153)


Meromorphic Function Zeta Function Eisenstein Series Compact Subgroup Discrete Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Faddeev,L.D., Expansion in eigenfunctions of the Laplace operator on the fundamental domain of a discrete group on the Lobacevskii plane, Trudy Moskov. Mat. O-ba,17, 323–350 (1967);= Trans. Moscow Math.Soc.,17, 357–386 (1967)Google Scholar
  2. 2.
    Faddeev, L.D., B.S.Pavlov, Scattering theory and automorphic functions, Proc. Steklov Inst. Mat.,27, 161–193 (1972);= J.of Soviet Math.,3, 522–548 (1975)Google Scholar
  3. 3.
    Lachaud,G., Analyse spectrale des former automorphes et séries d'Eisenstein, Invent. Math.,46, 39–79 (1978)Google Scholar
  4. 4.
    Lax,P.D.,R.S.Phillips, Scattering theory for automorphic functions, Bull.Amer. Math.Soc.,2, (New Series), 261–295 (1980)Google Scholar
  5. 5.
    Venkov, A.B., Spectral theory of automorphic functions-, the Selberg zeta-functions, and some problems of agalytic number theory and mathematical physics, Uspekhi Mat. Nauk 34, 69–135 (1979);= Russian Math.. Surveys 34, 79–153 (1979)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Gilles Lachaud
    • 1
  1. 1.Département de MathématiquesUniversité de NiceNiceFrance

Personalised recommendations