New results for classical gauge theories: Qualitative and exact

  • Arthur Jaffe
Gauge Theories Special Plenary Session
Part of the Lecture Notes in Physics book series (LNP, volume 153)


Vector Bundle Dirac Operator Homotopy Class Spatial Infinity Monopole Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Arnowitt, S. Deser and C. Misner, Phys. Rev. 118, 1100 (1960), 122, 997 (1961).Google Scholar
  2. 2.
    A. Ashtekar and A. Magnon-Ashtekar, Phys. Rev. Lett. 43, 181 (1979).Google Scholar
  3. 3.
    M. F. Atiyah, N. Hitchin, V. Drinfeld and Yu. Manin, Phys. Lett. 65A, 185 (1978).Google Scholar
  4. 4.
    M. F. Atiyah, N. Hitchin and I. Singer, Proc. Roy. Soc. A362, 425 (1978).Google Scholar
  5. 5.
    M. F. Atiyah and R. Ward, Commun. Math. Phys. 55, 117 (1977).Google Scholar
  6. 6.
    H. Bondi, M. G. J. van der Burg and A. W. K. Metzner, Proc. Roy. Soc. A269, 21 (1962).Google Scholar
  7. 7.
    Y. Choquet-Bruhat and D. Christodoulou, Acta Math. 146, 124 (1981).Google Scholar
  8. 8.
    E. Corrigan and P. Goddard, Commun. Math. Phys. 80, 575 (1981).Google Scholar
  9. 9.
    S. Deser and C. Teitelboim, Phys. Rev. Lett. 39, 249 (1977).Google Scholar
  10. 10.
    L. Faddeev, Problem of energy in general relativity, preprint.Google Scholar
  11. 11.
    P. Forgács, Z. Horváth and L. Palla, Phys. Lett. 102B, 131 (1981).Google Scholar
  12. 12.
    P. Goddard, J. Nuyts and D. Olive, Nucl. Phys. B125, 1 (1977).Google Scholar
  13. 13.
    N Hitchin, Monopoles and geodesics, Commun. Math. Phys., to be published.Google Scholar
  14. 14.
    G. T. Horowitz and M. J. Perry, Gravitational energy cannot become negative, preprint.Google Scholar
  15. 15.
    G. T. Horowitz and P. Tod, A relation between local and total energy in general relativity, preprint.Google Scholar
  16. 16.
    W. Isreal and J. M. Nestor, Positivity of the Bondi gravitational mass, Phys. Lett. 85A, 259 (1981).Google Scholar
  17. 17.
    A. Jaffe and C. Taubes, Vortices and Monopoles, Birkhäuser-Boston, 1980.Google Scholar
  18. 18.
    J. M. Nestor, Phys. Lett. 83A, 241 (1981).Google Scholar
  19. 19.
    L. Nirenberg and H. Walker, J. Math. Anal. Appl. 42, 271 (1973).Google Scholar
  20. 20.
    T. Parker and C. Taubes, On Witten's proof of the positive energy theorem, Commun. Math. Phys. to be published.Google Scholar
  21. 21.
    M. Prasad, Commun. Math. Phys. 80, 137 (1981).Google Scholar
  22. 22.
    M. Prasad and Rossi, Construction of exact multimonopole solutions, preprint.Google Scholar
  23. 23.
    M. Prasad and C. Sommerfield, Phys. Rev. Lett. 35, 760 (1975).Google Scholar
  24. 24.(i)
    -. Commun. Math. Phys. 65, 45 (1979).Google Scholar
  25. 24.(ii)
    -Commun. Math. Phys. 79, 47 (1981).Google Scholar
  26. 24.(iii)
    -Commun. Math. Phys. 79, 231 (1981).Google Scholar
  27. (iv).
    The proof of the positivity of the Bondi mass, preprint.Google Scholar
  28. 25.
    A. S. Schwartz, Nuclear Physics, B112, 358 (1976).Google Scholar
  29. 26.(i)
    -Commun. Math. Phys. 80, 343 (1981).Google Scholar
  30. 26.(ii)
    -Commun. Math. Phys. 81, 299 (1981).Google Scholar
  31. (iii).
    Self-dual Yang-Mills connections on non-self dual four-manifolds, J. Diff. Geom., to be published.Google Scholar
  32. 27.
    K. Uhlenbeck (i) Removable singularities in Yang-Mills fields, Commun. Math. Phys., to be published. (ii) Connections with LP bounds on curvature, Commun. Math. Phys., to be published.Google Scholar
  33. 28.(i)
    -Commun. Math. Phys. 79, 317 (1981).Google Scholar
  34. 28.(ii)
    -Phys. Lett. 102B, 136 (1981).Google Scholar
  35. 28.(iii)
    -Commun. Math. Phys. 80, 563 (1981).Google Scholar
  36. 29.
    E. Witten, A new proof of the positive energy theorem, Commun. Math. Phys. 80, 381 (1981).Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Arthur Jaffe
    • 1
  1. 1.Harvard UniversityCambridgeUSA

Personalised recommendations