Theory of τ functions in integrable systems

  • M. Jimbo
Nonlinear analysis and integrable systems
Part of the Lecture Notes in Physics book series (LNP, volume 153)


Vertex Operator Theta Function Hirota Equation Preserve Deformation Clifford Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Jimbo, T. Miwa and K. Ueno: Physica 2D 306 (1981).Google Scholar
  2. [2]
    M. Jimbo and T. Miwa: — II, III, to appear in Physica 2D (1981).Google Scholar
  3. [3]
    M. Kashiwara and T. Miwa: RIMS preprint 356, Kyoto Univ. (1981).Google Scholar
  4. [4]
    E. Date, M. Kashiwara and T. Miwa: — 357, (1981).Google Scholar
  5. [5]
    E. Date, M. Jimbo, M. Kashiwara, and T. Miwa: — 358, 359, 360, 361, 362, (1981).Google Scholar
  6. [6]
    M. Sato: Lectures delivered at the University of Tokyo, February, 1981.Google Scholar
  7. [7]
    J. Lepowsky and R.L. Wilson: Commun. Math. Phys. 62, 43, (1978).Google Scholar
  8. [8]
    V.G. Kac, D.A. Kazhdan, J. Lepowsky and R.L. Wilson: Realization of the basic representations of Euclidean Lie algebras, preprint(1981).Google Scholar
  9. [9]
    M. Sato and Y. Sato (Môri): RIMS Kokyuroku, 388, 183, (1980), 414, 181, (1981) (in Japanese).Google Scholar
  10. [l0]
    T. Miwa RIMS preprint 343 (1980).Google Scholar
  11. [11]
    M. Sato, T. Miwa and M. Jimbo: Publ. RIMS 15, Kyoto Univ. (1979) 201.Google Scholar
  12. [12]
    T. Miwa: RIMS preprint 342, (1980).Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • M. Jimbo
    • 1
  1. 1.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan

Personalised recommendations