Mathematical structure of orthodox quantum theory and its relation to operationally definable physical principles

  • Rudolf Haag
Foundation of Quantum Mechanics Parallel Session
Part of the Lecture Notes in Physics book series (LNP, volume 153)


Convex Body Convex Cone Jordan Algebra Dual Cone Superselection Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Lattice structure of Q (“Quantum Logic”)

  1. (1).
    G. Birkhoff, J.v. Neumann, Ann. of Math. 37 (1936), 823–843Google Scholar
  2. (2).
    C. Piron, Helv.Phys.Acta 37 (1964), 439–468Google Scholar

General axiomatics of states, effects, operations

  1. (3).
    G. Ludwig (see references in talk by H. Neumann)Google Scholar
  2. (4).
    J.C.T. Pool, Commun.Math.Phys. 9 (1968), 118–141 and 212–228Google Scholar
  3. (5).
    B. Mielnik, Commun.Math.Phys. 37 (1974), 221–256Google Scholar
  4. (6).
    H. Araki, Commun.Math.Phys. 75 (1980), 1–24Google Scholar

Convex cones and algebras

  1. (7).
    E.B. Vinberg, Trans.Mosc.Math.Soc. 1965, 63–93Google Scholar
  2. (8).
    E.M. Alfsen and F.W. Shultz, Acta Math. 140 (1978), 155–190 and ref. in talk by E.M. AlfsenGoogle Scholar
  3. (9).
    J. Bellissard and B. Jochum, Ann. Inst. Fourier 28 (1978), 27–67Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Rudolf Haag
    • 1
  1. 1.II. Institut für Theoretische PhysikUniversität HamburgGermany

Personalised recommendations