Advertisement

Scattering theory for obstacles with infinite boundaries

  • R. Weder
Quantum Mechanics General Plenary Session
Part of the Lecture Notes in Physics book series (LNP, volume 153)

Keywords

Invariance Principle Wave Operator Partial Isometry Initial Space Apartado Postal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.M. Combes and R. Weder, New Criterion for Existence and Completeness of Wave Operators and Applications to Scattering by Unbounded Obstacles. Preprint IIMAS 1980. To appear in Communications in Partial Differential Equations.Google Scholar
  2. [2]
    R. Weder, In preparation.Google Scholar
  3. [3]
    M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol.III. Academic Press, New York 1979.Google Scholar
  4. [4]
    C.H. Wilcox, Preprints, Univ. Bonn, N° 363, 387, 406 and 407 (1980).Google Scholar
  5. [5]
    E.B. Davies, Math. Proc. Cam. Phil. Soc., 82, 327–334 (1977).Google Scholar
  6. [6]
    E.B. Davies and B. Simon, Commun. Math. Phys., 63, 277–301 (1978).Google Scholar
  7. [7]
    B. Simon, Duke Math. Journal, 46 1, 119–168 (1979).Google Scholar
  8. [8]
    T. Tayoshi, Publ. RIMS Kyoto Univ., 16, 627–634 (1980)Google Scholar
  9. [9]
    A.G. Ramm, Differentsial'n y l Uranvneniya 6, 8, 1439–1452 (1970)Google Scholar
  10. [10]
    P. Constantin, Scattering for Schrödinger Operators in a Class of Domains with Non-Compact Boundaries. Preprint Hebrew University, Jerusalem.Google Scholar
  11. [11]
    D. Eidus and A. Vinnik, Soviet Math. Dokl. 15, 12–15 (1974).Google Scholar
  12. [12]
    D. Eidus, The Limiting Amplitude Principle for Schrödinger Equation in Domains with Unbounded Boundaries. Preprint Tel Aviv University.Google Scholar
  13. [13]
    D.B. Pearson, Helv. Phys. Acta 48, 639–653 (1975).Google Scholar
  14. [14]
    P. Deift and B. Simon, Journal of Functional Analysis, 23, 218–238 (1976).Google Scholar
  15. [15]
    M. Combescure and J. Ginibre, Journal of Functional Analysis 29, 54–73 (1978).Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • R. Weder
    • 1
  1. 1.Instituto de Investigación en Matemáticas Aplicadas y SistemasUniversidad Nacional Autónoma de MéxicoMéxico 20DF

Personalised recommendations