Advertisement

Geometric methods in quantum many-body problem

  • I. M. Sigal
Quantum Mechanics General Plenary Session
Part of the Lecture Notes in Physics book series (LNP, volume 153)

Keywords

Geometric Method Localization Formula Schr6dinger Operator Weyl Theorem Intercluster Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A1]
    S. Agmon, Jerusalem, preprint 1980.Google Scholar
  2. [A2]
    S. Agmon this volume.Google Scholar
  3. [AZS]
    M. A. Antonets, G. M. Zhislin and J. A. Shereshevskii, Theor. Math. Phys. 16 (1972), 800–808.Google Scholar
  4. [CT]
    J. M. Combes and L. Thomas, Comm. Math. Phys. 34 (1973), 251–270.Google Scholar
  5. [DHSV]
    P. Deift, W. Hunziker, B. Simon and E. Vock, Comm. Math. Phys. 64 (1978), 1–34.Google Scholar
  6. [E]
    V. Enss, Comm. Math. Phys. 52 (1977), 233–238.Google Scholar
  7. [I]
    R. Ismagilov, Sov. Math. Dokl. 2 (1961), 1137–1140.Google Scholar
  8. [K]
    T. Kato, unpublished.Google Scholar
  9. [KS]
    M. Klaus and B. Simon, Comm. Math. Phys. 78 (1980), 153–168.Google Scholar
  10. [M]
    J. Morgan III, J. Oper. Theor. 1 (1979), 109–115.Google Scholar
  11. [MS]
    J. Morgan III and B. Simon, Int. J. Quant. Chem. 17 (1980), 1143–1166.Google Scholar
  12. [OC]
    T. O'Connor, Comm. Math. Phys. 32 (1973), 319–340.Google Scholar
  13. [RSIV]
    M. Reed and B. Simon, “Method of Modern Mathematical Physics”, IV, N.Y. Acad. Press, 1978.Google Scholar
  14. [S1]
    I. M. Sigal, Comm. Math. Phys., submitted.Google Scholar
  15. [S2]
    I. M. Sigal, Duke Math. J., submitted.Google Scholar
  16. [SS]
    A. G. Sigalov and I. M. Sigal, Theor. Math. Phys. 5 (1970), 990–1005.Google Scholar
  17. [Sim1]
    B. Simon, Comm. Math. Phys. 55 (1977), 259–274.Google Scholar
  18. [Sim2]
    B. Simon, “Quantum Mechanics for Hamiltonians Defined as Quadratic Forms”, Princeton Univ. Press, Princeton, N. J. 1970.Google Scholar
  19. [U]
    J. Uchiyama, Publ. Res. Inst. Math. Sci., Kyoto Univ. A, 5 (1969), 51–63.Google Scholar
  20. [VW]
    C. van Winter, Danske V.d. Selsk. Mat.-Fys. Skr. 2 (1964–1965), No. 8, 1–60.Google Scholar
  21. [Y1]
    D. R. Yafaev, Math. USSR, Izv. 10 (1976), 861–896.Google Scholar
  22. [Y2]
    D. R. Yafaev, Theor. Math. Phys. 27 (1977). 328–343.Google Scholar
  23. [Z1]
    G. M. Zhislin, Tr. Mosk. Mat. Obs. 9 (1960), 81–128 (in Russian).Google Scholar
  24. [Z2]
    G. M. Zhislin, Theor. Math. Phys. 7 (1971), 571–578.Google Scholar
  25. [Z3]
    G. M. Zhislin, Theor. Math. PHys. 21 (1974), 971–980.Google Scholar
  26. [ZV]
    G. M. Zhislin and S. A. Vugalter, Theor. Math. Phys. 32 (1977), 602–614.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • I. M. Sigal
    • 1
  1. 1.Departrnent of Theoretical MathematicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations