Yang-mills theory in a multiply connected three space

  • G. Kunstatter
General Relativity (Quantum Aspect) Special Plenary Session
Part of the Lecture Notes in Physics book series (LNP, volume 153)


Gauge Group Holonomy Group Gauge Function Flat Connection Spatial Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C.J. Isham and G. Kunstatter, Phys. Letts. 102B, 417, 1981.Google Scholar
  2. [1]a
    C.J. Isham and G. Kunstatter, J. Math. Phys.(to be published).Google Scholar
  3. [2]
    R. Jackiw and C. Rebbi, Phys. Rev. Letts 37, 179, 1976.Google Scholar
  4. [2a]
    C.G. Callan, R.F. Dashen and D.J. Gross, Whys. Letts 63B, 334, 1976.Google Scholar
  5. [3]
    J.W. Milnor, Comm. Math. Helv. 32, 215, 1957.Google Scholar
  6. [3a]
    F. Kamber and P. Tondeur, “Lecture Notes in Mathematics”, vol. 67, Springer-Verlag, 1968.Google Scholar
  7. [4]
    S. Sciuto, Phys. Reports, 49, 181, 1979.Google Scholar
  8. [5]
    M. Asorey and L.J. Ma, J. Math. Phys. 20, 2379, 1979.Google Scholar
  9. [6]
    D.H. Mayer and K.S. Viswanthan,Rep. Math. Phys. (G.B.), 16, 281, 1979.Google Scholar
  10. [7]
    G, Kunstatter in Quantum Structure of Space and Time, proceedings of the Nuffield Workshop on Quantum Gravity at Imperial College, M. Duff and C.J. Isham (eds). To be published.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • G. Kunstatter
    • 1
  1. 1.Physics DepartmentUniversity of TorontoTorontoCanada

Personalised recommendations