Singularities in fluid dynamics

  • James Glimm
Fluid Dynamics General Plenary Session
Part of the Lecture Notes in Physics book series (LNP, volume 153)


Sinqularities in fluid flow my be geometrically unstable. When this instability occurs in a regime governed by the scale invariant Euler equations, the phenomena is repeated on all length scales and leads to chaotic solutions. Turbulence, vortex roll up and fingering are discussed. The increased resolution provided by the method of tracking of discontinuities offers a computational tool for the study of this class of problems.


Shear Layer Euler Equation Couette Flow Injection Well Strange Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. H. Aref and E. Siggia (1980).Vortex dynamics of the two dimensional shear layer. J. Fluid Mech. 100, 705–737.Google Scholar
  2. G. Batchelor (1953).The theory of homogeneous turbulence. Cambridge University Press, London.Google Scholar
  3. G. Batchelor (1967).An introduction to fluid mechanics. Cambridge University Press, London.Google Scholar
  4. B. Bernard and T. Ratice, eds. (1977).Turbulence. Seminar, Berkeley 1976/1977. Springer-Verlag, New York.Google Scholar
  5. E. Bradshaw, ed. (1978). Turbulence. Springer-Verlag, New York.Google Scholar
  6. L. Caffarelli, R. Kohn and L. Nirenberg (1981).Google Scholar
  7. A. Chorin and J. Marsden (1979).A mathematical introduction to fluid dynamics. Springer-Verlag, New York.Google Scholar
  8. A. Chorin (1981).Estimates of intermittency, spectra and blow-up in developed turbulence. Preprint.Google Scholar
  9. P. Collet and J.-P. Eckmann (1980.Iterated maps on the interval as dynamical systems. Birkhäuser, Boston.Google Scholar
  10. J.-P. Eckmann (1981). Roads to turbulence in dissipative dynamical systems. Preprint.Google Scholar
  11. J.-P. Eckmann, L. Thomas and P. Wittwer (1981).Intermittency in the presence of noise. Preprint.Google Scholar
  12. M. Feigenbaum (1980).The transition to a periodic behavior in turbulent systems. Comm. Math. Phys. 77, 65–86.Google Scholar
  13. P. Fife (1968).Considerations regarding the mathematical basis for Prandtl's boundary layer theory. Archive Rat. Mech. 28, 184–216.Google Scholar
  14. U. Frisch, P.L. Salem and M. Nelkin (1978).A simple dynamical model of intermittent fully developed turbulence. J. Fluid Mech. 87, 719–736.Google Scholar
  15. J. Glimm (1981).Tracking of interfaces in fluid floro: Accurate methods for piecewise smooth problems.In:Proceedings of MRC symposium, R. Meyer, ed.Google Scholar
  16. J. Glimm, E. Isaacson, D. Marchesin and O. McBryan (1981).Front tracking for hyperbolic systems. Adv. Appl. Math. 2, 91–119.Google Scholar
  17. S. Goldstein (1965). Modern developments in fluid mechanics, Vol. I, II. Dover, New York.Google Scholar
  18. H. Grad (1958).In: Handbuch der Physik, Vol. 12. Springer-Verlag, Berlin.Google Scholar
  19. J. Hinze (1959). Turbulence.McGraw-Hill, New York.Google Scholar
  20. T. Kato (1967). The two-dimensional non-stationary Euler equation. Arch. Rat. Mech. 25, 188–200.Google Scholar
  21. S. Kawashima, A. Matsumura and T. Nishida (1979). On the fluid-dynamics approximation to the Boltzmann equation at the level of the Navier-STokes equation. Comm. Math. Phys. 70, 97–924.Google Scholar
  22. Kraichnen (1974).On Kolmogoroff's inertial range theories.J. Fluid Mech. 62, 305–330.Google Scholar
  23. E. Lorentz (1963). Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141.Google Scholar
  24. O. Lanford (1980). In: Mathematical problems in theoretical physics, K. Osterwalder, ed. Springer-Verlag, New York.Google Scholar
  25. B. Mandelbrot (1977). Fractals: Form, choice and dimension. Freeman, San Francisco.Google Scholar
  26. McLaughlin and P. Martin (1975). Transition to turbulence in a statistically stressed fluid system. Phys. Rev. A. 12, 186–203.Google Scholar
  27. A. Monin and A. Yaglom (1971, 1975).Statistical fluid mechanics Vol. I, II. MIT Press, Cambridge.Google Scholar
  28. D. Moore (1981).J. Fluid Mech., To appear.Google Scholar
  29. O. Oleinik (1966).On the system of boundary layer equations for unstead flow of an incompressible fluid.Soviet Mathematics (translation of Doklady Akad. Nauk SSR) 7, 727Google Scholar
  30. D. Ruelle (1979). Sensitive dependence on initial conditions and turbulent behavior of dynamical systems.2n:Bifurcation theory and its applications in scientific disciplines.Ed. by 0. Rössler.Annals of the New York Acad. of Sci. 316, 408–416.Google Scholar
  31. D. Ruelle and Takins (1971).On the nature of turbulence.Comm. Math. Phys. 20, 167–192, 23, 343–344.Google Scholar
  32. P. Soffman and G. Baker (1979).Vortex interactions.Ann. Rev. Fluid Mech. 11, 95–122.Google Scholar
  33. V. Scheffer (1976). Partial regularity of solutions to the Navier-STokes equations. Par. J. Math. 66, 535–552.Google Scholar
  34. V. Scheffer (1977).Hausdorff measure and the Navier-STokes equations. Comm. Math. Phys. 73, 1–42.Google Scholar
  35. V. Scheffer (1980). The Navier-Stokes equations on bounded domains. Comm. Math. Phys. 73, 1–42.Google Scholar
  36. E. Siggia (1981). Numerical study of small-scale intermittency in three-dimensional turbulence. J. Fluid Mech. 107, 375–406.Google Scholar
  37. C. Sulem, P. Sulem, Bardos and U. Frisch (1981). Finite time analyticity for the Kelvin-Helmholtz instability. Comm. Math. Phys. to appear.Google Scholar
  38. R. Teman (1976). Ed. Turbulence and Navier-Stokes equations.Springer-Verlag, New York.Google Scholar
  39. R. Teman (1976). The Navier-Stokes equations. North Holland-Elsevier. Amsterdam.Google Scholar
  40. V. Yudovich (1964).The two dimensional nonstationary problem of flow of an ideal incompressible fluid in a given domain. Math. Sb. 64, 562–588.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • James Glimm
    • 1
    • 2
  1. 1.Rockefeller UniversityNew York
  2. 2.Courant InstituteNew York

Personalised recommendations