Advertisement

Geometric analysis of ϕ4 fields and Ising models

  • M. Aizenman
Quantum Field Theory and Statistical Mechanics General Plenary Session
Part of the Lecture Notes in Physics book series (LNP, volume 153)

Keywords

Ising Model Free Field Random Surface Gaussian Field Correlation Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Symanzik, these Proceedings.Google Scholar
  2. [2]
    J. Fröhlich, these Proceedings.Google Scholar
  3. [3]
    E. Brézin, these Proceedings and contribution in Methods in Field Theory, edited by R. Balian and J. Zinn-Justin (North-Holland, 1976).Google Scholar
  4. [4]
    K. Symanzik, in Local Quantum Theory, edited by R. Jost (Academic Press, New York, 1969).Google Scholar
  5. [5]
    M. Aizenman, Phys. Rev. Lett. 47, 1 (1981).Google Scholar
  6. [6]
    M. Aizenman, “Geometric Analysis of ϕ4 Fields and Ising Models”, to appear in Commun. Math. Phys.Google Scholar
  7. [7]
    J. Fröhlich, “On the Triviality of ϕ44 Theories and the Approach to the Critical Point in \(d\mathop > \limits_{( = )} 4\)Dimensions”, I.H.E.S. preprint (1981).Google Scholar
  8. [8]
    A. Dvoretsky, P. Erdös and S. Kakutani, Acta Sci. Math. (Szeged) 12, 75 (1950).Google Scholar
  9. [9]
    M. Aizenman, “On Brownian Motion in d = 4 Dimensions,” in preparation.Google Scholar
  10. [10]
    R. Griffiths, C. Hurst and S. Sherman, J. Math. Phys. 33, 145 (1973).Google Scholar
  11. [11]
    B. Simon, Commun. Math. Phys. 77, 111 (1980).Google Scholar
  12. [12]
    C.M. Newman, Commun. Math. Phys. 41, 1 (1975).Google Scholar
  13. [13]
    J. Lebowitz, Commun. Math. Phys. 35, 87 (1974).Google Scholar
  14. [14]
    J. Fröhlich, T. Spencer and B. Simon, Commun. Math. Phys. 50, 79 (1976).Google Scholar
  15. [15]
    A. Sokal, “An Alternative Constructive A proach to the ϕ34 Quantum Field Theory, and a Possible Destructive Approach to ϕ44”, to appear in Ann. Inst. Henri Poincaré.Google Scholar
  16. [16]
    J. Glimm and A. Jaffe, Ann. Inst. Henri Poincaré A, 22, 97 (1975).Google Scholar
  17. [17]
    B. Widom, J. Chem. Phys. 43, 3892 (1965)Google Scholar
  18. [17a]
    L.P. Kadanoff et.al., Rev. Mod. Phys. 39, 395 (1967)Google Scholar
  19. [17b]
    M. Fisher, Rep. Prog. Phys. 30, 615 (1967), and references therein.Google Scholar
  20. [18]
    J. Glimm and A. Jaffe, Ann. Inst. Henri Poincaré A, 22, 109 (1975).Google Scholar
  21. [19]
    A. Sokal, Phys. Lett. 71A, 451 (1979).Google Scholar
  22. [20]
    J. Glimm and A. Jaffe, Quantum Physics (Springer-Verlag, Berlin Heidelberg New York, 1981).Google Scholar
  23. [21]
    B. Simon, The P(ϕ) 2 Euclidean (Quantum) Field Theory (Princeton University Press, 1974).Google Scholar
  24. [22]
    Constructive Quantum Field Theory, edited by G. Velo and A. Wightman (Springer-Verlag, Berlin Heidelberg New York, 1973).Google Scholar
  25. [23]
    B. Simon and R. Griffiths, Commun. Math. Phys. 33, 145 (1973).Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • M. Aizenman
    • 1
  1. 1.Department of PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations