Plasmon-assisted recombination in narrow-gap semiconductors in a magnetic field

  • P. A. Wolff
  • C. Verie
  • S. Y. Yuen
  • M. E. Weiler
  • L. R. Ram-Mohan
4. Optics
Part of the Lecture Notes in Physics book series (LNP, volume 152)


This paper presents calculations of the effect of large magnetic fields on the plasmon-assisted recombination process in narrow-gap semiconductors. Minority carriers, in materials such as n-(Pb,Sn)Te or n-(Hg,Cd)Te, are believed to recombine via plasma wave emission when EG ≤ ħwp; lifetimes in the 10−12 −10−13 sec range are anticipated This large recombination rate precludes stimulated plasma wave emission. Magnetic fields change the plasmon recombination process in two ways. Landau level quantization enhances the electron state density at the band edge, increasing the gain of k = 0 plasma modes. The field also modifies the plasmon dispersion relation; this effect can be exploited to inhibit recombination via plasma modes propagating across the field, and to increase the recombination time. The two effects combine to yield a threshold pumping level for stimulated plasma wave emission in the 10–100 kW/cm2 range.


Dielectric Function Landau Level Minority Carrier Plasmon Mode Plasma Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    P.A. Wolff: Phys. Rev. Letters 24, 266 (1970).Google Scholar
  2. 2).
    P.A. Wolff: Procs. Conf. on the Physics of Semimetals and Narrow Gap Semiconductors (Pergamon Press, New York 1971); D.A. Cammack, A.W. Nurmikko, G.W. Pratt, and J.R. Lowney: J. Appl. Phys. 46, 3965 (1975); A. Elci: Phys. Rev. B16, 5443 (1977); Ralf Dornhaus and Gunter Nimtz:Procs. Intl. Conf. Recombination in Semiconductors, Southampton (1978).Google Scholar
  3. 3).
    A.R. Calawa, J.O. Dimmock, T.C. Harman, and I. Melngailis: Phys. Rev. Letters 23, 7 (1969).Google Scholar
  4. 4).
    R.A. Ferrell: Phys. Rev. 111, 1214 (1958).Google Scholar
  5. 5).
    P.M. Platzman and P.A. Wolff: Waves and Interactions in Solid State Plasmas, (Academic Press, N.Y. 1973), Chap. V.Google Scholar
  6. 6).
    P.A. Wolff: Phys. Rev. B1, 950 (1970).Google Scholar
  7. 7).
    E.O. Kane: J. Phys. Chem. Solids 1, 83 (1956).Google Scholar
  8. 8).
    C.R. Pidgeon and R.N. Brown: Phys. REv. 146, 575 (1966).Google Scholar
  9. 9).
    M.H. Weiler: PhD Thesis, MIT, 1977; M.H. Weiler, R.L. Aggarwal, and B. Lax: Phys. Rev. B16, 3603 (1977).Google Scholar
  10. 10).
    V. Guldner, C. Rigaux, M. Grynberg, and A. Mycielski: Phys. Rev. B8, 3875 (1973).Google Scholar
  11. 11).
    R. Kubo, S.J. Miyake and N. Hashitsume in Solid State Physics (Academic Press, New York, 1965), Vol. 17.Google Scholar
  12. 12).
    L.R. Ram-Mohan and P.A. Wolff: (To be published).Google Scholar
  13. 13).
    A.A. Abrikosov, L.P. Gorkov, and I.E. Dzyaloshinski: Methods of Quantum Field Theory in Statistical Physics, (Prentice-Hall, Englewood Cliffs, New Jersey, 1963), Chap. VII.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • P. A. Wolff
    • 1
  • C. Verie
    • 1
  • S. Y. Yuen
    • 1
  • M. E. Weiler
    • 2
  • L. R. Ram-Mohan
    • 3
  1. 1.Francis Bitter National Magnet LaboratoryCambridge
  2. 2.Massachusetts Institute of TechnologyCambridge
  3. 3.Worcester Polytechnic InstituteWorcester

Personalised recommendations