The inverse scattering transformation and the functional integration method

  • H. J. de Vega
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 151)


Saddle Point Ground State Energy Poisson Bracket Anharmonic Oscillator Imaginary Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    See for reviewsGoogle Scholar
  2. [1a]
    A.C. Scott, F.Y.F. Chu and D.W. Mc Laughlin, Prod. IEEE 61, 1443 (1973).Google Scholar
  3. [1b]
    L.D. Faddeev, Journal of Math. Phys. 4, 72 (1973) and Journal of Soviet Mathematics 5, 334 (1976).CrossRefGoogle Scholar
  4. [1c]
    M. Ablowitz, D.J. Kaup, A.C. Newell and H. Segur, Stud. Appl. Math. 53, 249 (1974).Google Scholar
  5. [1d]
    K. Chadan and P.C. Sabatier, Inverse Problems in Quantum Scattering Theory, Springer Verlag, New York 1977.Google Scholar
  6. [2]
    H.J. de Vega, Commun. Math. Phys. 70, 29 (1979).Google Scholar
  7. [3]
    H.J. de Vega, Phys. Rev. D 21, 395 (1980)-See also Ref.[5]Google Scholar
  8. [4]
    H.J. de Vega, Phys. Lett. 98 B, 280 (1981).Google Scholar
  9. [5]
    [5]H.J. de Vega, Phys. Rev. D 22, 2400 (1980).Google Scholar
  10. [6]
    H.J. de Vega, (in preparation).Google Scholar
  11. [7]
    R.L. Stratonovich, Sov. Phys. Dokl. 2, 416 (1957).Google Scholar
  12. [8]
    E. Brézin, J.C. Le Guillou and J. Zinn-Justin, in Field Theoretical Approach to Critical Phenomena, edited by C. Domb and M.S. Green, Academic Press, New York 1976, Vol. 6.Google Scholar
  13. [9]
    The computation of large orders in perturbation theory from instantons can be found in L.N. Lipatov, J.E.T.P. Letters 25, 105 (1977), J.E.T.P. 45, 216 (1977)Google Scholar
  14. [9A]
    E. Brézin, J.C. Le Guillou and J. Zinn-Justin, Phys. Rev. D 15, 1544 and 1558 (1977).Google Scholar
  15. [10]
    S. Hikami and E. Brézin, J. Phys. A 12, 759 (1979).Google Scholar
  16. [11]
    L.D. Faddeev and V.E. Zakharov, Funct. Anal. and Appl. 5, 280 (1971) For a review seeGoogle Scholar
  17. [11a]
    L.D. Faddeev in “Solitons” page 339, Ed. by R.K. Bullough and P.J. Caudrey, Springer Verlag, Berlin (1980).Google Scholar
  18. [12]
    J.L. Gervais and A. Jevicki, Nucl. Phys. B 110, 93 (1976).Google Scholar
  19. [13]
    T. Banks, C.M. Bender and T.T. Wu, Phys. Rev. D 8, 3346 and 3366 (1973).Google Scholar
  20. [14]
    J. Zinn-Justin, Saclay preprint, DPh T/160 (1979).Google Scholar
  21. [15]
    R.J. Cant, Phys. Lett. 95 B, 380 (1980).Google Scholar
  22. [16]
    See for example H.J. de Vega. J.L. Gervais and B. Sakita, Nucl. Phys. B 139, 20 (1978) and Ref. 14.Google Scholar
  23. [17]
    H.J. de Vega, LPTHE preprint PAR 80/29 (1980). To be published in Comm. Math. Phys.Google Scholar
  24. [18]
    E. Brézin and J. Zinn-Justin, Phys. Rev. Lett. 36, 691 (1976), Phys. Rev. B 14, 3110 (1976).Google Scholar
  25. [18a]
    W. Bardeen, B. Lee and R. Shrock, Phys. Rev. D 14, 985 (1976).Google Scholar
  26. [19]
    A.B. Zamolodchikov and Al. B. Zamolodchikov, Ann. Phys. 80, 253 (1979).Google Scholar
  27. [20]
    I.M. Gelfand and G.E. Shilov, Generalized functions, Academic Press, New York 1964.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • H. J. de Vega
    • 1
  1. 1.Laboratoire de Physique Théorique et Hautes EnergiesUniversité Pierre et Marie CurieParis Cedex 05France

Personalised recommendations