Advertisement

Abstract computability on algebraic structures

  • A. P. Ershov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 122)

Keywords

Recursive Function Computable Function Universal Function Predicate Symbol Pairing Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Buda and Itkin 1974.
    A. O. Buda and V. É. Itkin, “Svodimost' ékvivalentnosti skhem programm k termal'noi ekvivalentnosti,” in Trudy 3-go Vsesoiuznogo sympoziuma “Sistemnoe i teoreticheskoe programmirovanie”, vol. 1, Kishinev, KGU (1974), 293–324.Google Scholar
  2. Engeler 1980.
    E. Engeler, “On the structure of algorithmic problems,” in K.-H. Böhling and K. Indermark, eds., 1. Fachtagung über Automatentheorie und Formale Sprachen, Lecture Notes in Computer Science 2 (1973), 2–15.Google Scholar
  3. Ershov 1958.
    A. P. Ershov, “Ob operatornykh algoritmakh,” Doklady AN SSSR 122,6 (1958), 967–970.Google Scholar
  4. Ershov 1977.
    A. P. Ershov, “O sushchnosti transliatsii,” Programmirovanie (1977, No.5), 21–39. Also A. P. Ershov, “On the essence of compilation,” in E. J. Neuhold, ed., Formal Description of Programming Concepts, Amsterdam, North-Holland (1977), 391–420.Google Scholar
  5. Ershov 1980.
    A. P. Ershov, “Smeshannye vychisleniia: potentsial'nye primeneniia i problemy issledovaniia,” in Vsesoiuznaia konf. “Metody matem. logiki v problemakh isk. intell. i sist. programmirovanie,” part 1, Palanga, 3–5 Sept. 1980, Vil'nius, Inst. matem. i kib. AN LatSSR, 1980, pp. 26–55. Also A. P. Ershov, “Mixed computation: Potential applications and problems for study,” Theoretical Computer Science, to appear.Google Scholar
  6. Fenstad 1974.
    J. E. Fenstad, “On axiomatizing recursion theory,” in J. E. Fenstad and P. G. Hinman, eds., Generalized Recursion Theory, Amsterdam, North-Holland (1974), 385–404.Google Scholar
  7. Fenstad 1978.
    J. E. Fenstad, “On the foundation of general recursion theory: Computation versus inductive definability,” in J. E. Fenstad et al., eds., Generalized Recursion Theory II, Amsterdam, North-Holland (1978), 99–110.Google Scholar
  8. Fraissé 1959.
    R. Fraissé, “Une notion de récursivitè relative,” in Infinitistic Methods,” Proc. Symp. Foundations of Math., Warsaw 1959, Oxford, Pergamon (1961), 323–328.Google Scholar
  9. Friedman 1969a.
    H. Friedman, “Axiomatic recursive function theory,” in R. O. Gandy and C. M. E. Yates, eds., Logic Colloquium '69, Amsterdam, North-Holland (1971), 113–138.Google Scholar
  10. Friedman 1969b.
    H. Friedman, “Algorithmic procedures, generalised Turing algorithms and elementary recursion theories,” in R. O. Gandy and C. M. E. Yates, eds., Logic Colloquium '69, Amsterdam, North-Holland (1971), 361–390.Google Scholar
  11. Glushkov 1965.
    V. M. Glushkov, “Teoriia avtomatov i voprosy proektirovaniia struktur vychislitel'nykh mashin,” Kibernetika (1965, No.1), 3–11.Google Scholar
  12. Glushkov 1979.
    V. M. Glushkov, “Teorema o nepolnote formal'nykh teorii c pozitsii programmista,” Kibernetika (1979, No.2), 1–5.Google Scholar
  13. Goad 1980.
    C. A. Goad, “Proofs as descriptions of computation,” preprint, Dept. of Computer Science, Stanford Univ. (1980), 14pp.Google Scholar
  14. Grilliot 1974.
    T. J. Grilliot, “Dissecting abstract recursion,” in J. E. Fenstad and P. G. Hinman, eds., Generalized Recursion Theory, Amsterdam, North-Holland (1974), 405–420.Google Scholar
  15. Harel 1980.
    D. Harel, “On folk theorems,” CACM 23 (1980), 379–389.Google Scholar
  16. Itkin 1972.
    V. É. Itkin, “Logiko-termal'naia ékvivalentnost' skhem program,” Kibernitika (1972, No.1), 5–27.Google Scholar
  17. Itkin and Zwinogrodski 1972.
    V. E. Itkin and Z. Zwinogrodski, “On program schemata equivalence,” J. Comp. Syst. Sci. 6 (1972), 88–101.Google Scholar
  18. Kasai 1975.
    T. Kasai, “A universal context-free grammar,” Information and Control 28 (1975), 30–34.CrossRefGoogle Scholar
  19. Kleene 1952.
    S. C. Kleene, Introduction to Metamathematics, New York, Van Nostrand, 1952.Google Scholar
  20. Kleene 1957.
    S. K. Klini, Vvedenie v metamatematiku, M. Izd. IL (1957), 526 pp.Google Scholar
  21. Kolmogorov 1953.
    A. N. Kolmogorov, “O poniatii algoritma,” Uspekhi Mat. Nauk 8,4 (1953), 175–176.Google Scholar
  22. Kolmogorov and Uspensky 1958.
    A. N. Kolmogorov and V. A. Uspenskii, “K poniathu algoritma,” Upsekhi Mat. Nauk 13,4 (1958), 3–28.Google Scholar
  23. Kreisel 1963.
    G. Kreisel, “Model theoretic invariants: Application to recursive and hyperarithmetic operations,” in The Theory of Models, Proc. 1963 international symposium at Berkeley, Calif., Amsterdam, North-Holland (1965), 190–205.Google Scholar
  24. Kreisel 1969.
    G. Kreisel, “Some reasons for generalizing recursion theory,” in R. O. Gandy and C. E. M. Yates, eds., Logic Colloquium '69, Amsterdam, North-Holland (1971), 139–198.Google Scholar
  25. Kreisel 1975.
    G. Kreisel, “Some uses of proof theory for finding computer programs,” in Colloque International de Logique, Clermont-Ferrand, Colloques Internationaux du CNRS, No.249 (1975), 123–124.Google Scholar
  26. Krinitisky 1959.
    N. A. Krinitskii, “Ravnosil'nye preobrazovaniia logicheskikh skhem,” avtoreferat dissertatsii, Moscow State Univ. (1959).Google Scholar
  27. Krinitisky 1970.
    N. A. Krinitskii, Ravnosil'nye preobrazovaniia algoritmov i programmirovanie, Moscow, Sovetskoe Radio (1970).Google Scholar
  28. Lacombe 1969.
    D. Lacombe, “Recursion theoretic structures for relational systems,” in R. O. Gandy and C. E. M. Yates, eds., Logic Colloquium '69, Amsterdam, North-Holland (1971), 3–17.Google Scholar
  29. McCarthy 1961.
    J. McCarthy, “Towards a mathematical theory of computation,” in Proc. IFIP Congress 1961, Amsterdam, North-Holland (1962), 21–28.Google Scholar
  30. Maltsev 1961.
    A. I. Mal'tsev, “Konstruktivnye algebry, I,” Uspekhi Mat. Nauk 16,3 (1961), 3–60.Google Scholar
  31. Moschovakis 1969a.
    Y. N. Moschovakis, “Abstract first order computability, I,” Trans. Amer. Math. Soc. 138 (1969), 427–464.Google Scholar
  32. Moschovakis 1969b.
    Y. N. Moschovakis, “Abstract computability and invariant definability,” J. Symb. Logic 34 (1969), 605–633.Google Scholar
  33. Moschovakis 1969c.
    Y. N. Moschovakis, “Axioms for computation theories,” in R. O. Gandy and C. E. M. Yates, eds., Logic Colloquium '69, Amsterdam, North-Holland (1971), 199–256.Google Scholar
  34. Moschovakis 1973.
    Y. N. Moschovakis, Elementary Induction on Abstract Structures, Amsterdam, North-Holland, 1973.Google Scholar
  35. Nepeivoda 1981.
    N. N. Nepeivoda, “The logical approach to programming,” in this volume.Google Scholar
  36. Nepomniashchy 1974.
    V. A. Nepomniaschiγ, “Kriterii algoritmicheskoi polnoty sistem operatsiγ,” in Teoriia programmirovaniia, Novosibirsk, Vych. Tsentr SO AN SSSR (1974), vol. 1, pp. 267–279. Also V. A. Nepomniashchy, “Criteria for the algorithmic completeness of the system of operations,” in A. P. Ershov and V. A. Nepomniashchy, eds., Proc. International Symposium on Theoretical Programming, Novosibirsk, 1972, Lecture Notes in Computer Science 5 (1974). 172–186.Google Scholar
  37. Paterson 1968.
    M. S. Paterson, “Program schemata,” Machine Intelligence 3 (1968), 19–31.Google Scholar
  38. Paterson and Hewitt 1970.
    M. S. Paterson and C. E. Hewitt, “Comparative Schematology,” in Records of Project MAC Conf. on Concurrent Systems and Parallel Computation, ACM (1970), 119–128.Google Scholar
  39. Platek 1966.
    Richard A. Platek, Foundations of recursion theory, Ph.D. dissertation, Stanford University, January 1966.Google Scholar
  40. Rosen 1975.
    B. K. Rosen, “Program equivalence and context-free grammars,” J. Comp. Syst. Sci. 11 (1975), 358–374.Google Scholar
  41. Rosenberg 1977.
    G. Rosenberg, “A note on universal grammars,” Information and Control 34 (1977), 172–175.CrossRefGoogle Scholar
  42. Rutledge 1964.
    J. D. Rutledge, “On Ianov's program schemata,” JACM 11 (1964), 1–9.CrossRefGoogle Scholar
  43. Sabelfeld 1976.
    V. K. Sabel'fel'd, “Ékvivalentnye preobrazovaniia standartnykh skhem,” in Problemy programmirovaniia, Novosibirsk, Vych. Tsentr SO AN SSSR (1976), 94–121. Also V. K. Sabelfeld, “Äquivalente Transformationen für Flußdiagramme,” Acta Informatica 10 (1978), 127–156.Google Scholar
  44. Shen 1980.
    A. Shen', “Aksiomaticheskii podkhod k teorii algoritmov i otnositel'naia vychislimost',” Vestn. Mosk. un-ta, Ser. 1, Matem. mekhan. (1980, No.2), 27–29.Google Scholar
  45. Skordev 1976.
    D. Skordev, “Recursion theory on iterative combinatory spaces,” Bull. Acad. Polon. Sci., Ser. Math. Astr. Phys. 24 (1976), 23–31.Google Scholar
  46. Strong 1968.
    H. R. Strong, “Algebraically generalized recursive function theory,” IBM J. Res. Devel. 12 (1968), 465–475.Google Scholar
  47. Uspensky 1974.
    V. A. Uspenskii, “Teorema Gedelia o nepolnote v elementarnom izlozhenii,” Uspckhi Mat. Nauk 29,1 (1974), 3–47.Google Scholar
  48. Wagner 1963.
    E. G. Wagner, “Uniformly reflexive structures: Towards an abstract theory of computability,” Doctoral dissertation, Columbia Univ. (1963).Google Scholar
  49. Wagner 1969.
    E. G. Wagner, “Uniformly reflexive structures: An axiomatic approach to computability,” Information Sciences 1 (1969), 343–362.CrossRefGoogle Scholar
  50. Yanov 1957.
    Iu I. Ianov, “O ravnosil'nosti i preobrazovaniiakh skhem programm,” Doklady AN SSSR 113 (1957), 39–42.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • A. P. Ershov
    • 1
  1. 1.Computing Center, Siberian BranchUSSR Academy of SciencesNovosibirsk

Personalised recommendations