Advertisement

Thermodynamics and kinetics of orientational crystallization of flexible-chain polymers

  • Galina K. Elyashevich
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 43)

Abstract

Crystallization of flexible-chain polymers from isotropic solutions and melts usually leads to the formation of folded-chain crystals. Mechanical properties, particularly the tenacity of these samples, are limited by the small number of tie chains. Crystallization in deformed melts proceeds by a substantially different mechanism involving extension of chains and formation of extended-chain crystals: this process is to some extent similar to that of crystallization of rigid-chain polymers leading to polymers of high tenacities. This method which promotes the formation of extended-chain crystals during crystallization of flexible-chain polymers — the orientational crystallization — is suitable for the preparation of polymer films and fibers from flexible-chain polymers with high tenacity and high modulus. The paper presents a comparison of orientational crystallization with other methods for obtaining high-strength polymer materials. Technological prospects of this method are also considered.

Keywords

Melting Temperature Chain Extension Molecular Orientation Nematic Phase Fibrillar Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. 1.
    Flory, P. J.: Proc. Roy. Soc. (London) A. 234, 60 (1956)Google Scholar
  2. 2.
    Papkov, S. P., Kulichikhin, V. G.: Liquid-crystalline state of polymers (in Russian), Moscow: Khimiya 1977Google Scholar
  3. 3.
    Elyashevich, G. K., Frenkel, S. Ya., in: Orientational phenomena in polymer solutions and melts (in Russian), Moscow: “Khimiya, p. 9–90, 1980. See also: Elyashevich, G. K., Frenkel, S. Ya.: Vysokomol. Soedin. 21 B, 920 (1979)Google Scholar
  4. 4.
    Marikhin, V. A., Myasnikova, L. P.: Supermolecular structure of polymers (in Russian), Leningrad: Khimiya 1977Google Scholar
  5. 5.
    Sakurada, J., Ito, T., Nakamae, K.: J. Polym. Sci. C 15, 75 (1966)Google Scholar
  6. 6.
    Novak, I. I., Vettegren, V. I.: Vysokomol. Soedin. 6, 706 (1964)Google Scholar
  7. 7.
    Glenz, W., Peterlin, A.: J. Macromol. Sci. 4, 473 (1970)Google Scholar
  8. 8.
    Bonart, R., Hosemann, R.: Makromol. Chem. 39, 105 (1960)Google Scholar
  9. 9.
    Zhurkov, S. N., Slutsker, A. I., Yastrebinsky, A. A.: Dokl. Akad. Nauk SSSR, 153, 305 (1963)Google Scholar
  10. 10.
    Flory, P. J.: J. Am. Chem. Soc. 84, 2857 (1962)Google Scholar
  11. 11.
    Peterlin, A.: Polym. Eng. Sci. 14, 627 (1974)Google Scholar
  12. 12.
    Regel, V. R., Slutsker, A. I., Tomashevsky, E. E.: Kinetic nature of strength of solids (in Russian), Moscow: Nauka 1974Google Scholar
  13. 13.
    Frenkel, S.: J. Polym. Sci.: Polym. Symposia 58, 195 (1977)Google Scholar
  14. 14.
    Elyashevich, G. K., Baranov, V. G., Frenkel, S. Ya.: J. Macromol. Sci.-Physics B 13, 255 (1977)Google Scholar
  15. 15.
    Elyashevich, G. K. et al.: Fizika Tv. Tela 18, 2475 (1976)Google Scholar
  16. 16.
    Baranov, V. G.: Khim. Volokna N 3, 14 (1977)Google Scholar
  17. 17.
    Pennings, A. J. et al.: J. Polym. Sci. C 38, 167 (1972)Google Scholar
  18. 18.
    Southern, J. H. et al.: Makromol. Chem. 162, 19 (1972)Google Scholar
  19. 19.
    Keller, A.: J. Polym. Sci. Polym. Symp. 58, 395 (1977)Google Scholar
  20. 20.
    US patent 3,946,094Google Scholar
  21. 21.
    Text. Ind. 3, 28 (1973)Google Scholar
  22. 22.
    Tudze, T., Kawai, T.: Physical chemistry of polymers (Russian transl.), Moscow: Khimiya 1977Google Scholar
  23. 23.
    Zurabian, R. S. et al.: J. Polym. Sci.: Polym. Symp. C 44, 163 (1974)Google Scholar
  24. 24.
    Pennings, A. J., Kiel, A. M.: Kolloid Z., Z. Polym. 222, N 1, 1 (1968)Google Scholar
  25. 25.
    Keller, A., Machin, M. J.: J. Macromol. Sci. B 1, 41 (1967)Google Scholar
  26. 26.
    Collier, J. R.: Polym. Eng. Sci. 16, 204 (1976)Google Scholar
  27. 27.
    Peterlin, A.: Polymer Eng. Sci.: 16, 126 (1976)Google Scholar
  28. 28.
    Mandelkern, L.: J. Polym. Sci. B 5, 1 (1967)Google Scholar
  29. 29.
    Prigogine, I., Lefevere, R.: Synergetics, Coop. Phenomena Multi-Comp. Syst., 1st Proc. Symp., 1972, Maken H. B. (ed.), p. 125–135Google Scholar
  30. 30.
    Wunderlich, A., Arakawa, T.: J. Polym. Sci. A 2, 3697 (1964)Google Scholar
  31. 31. a)
    Yasuniwa, M. et al.: Japan J. Appl. Phys. 15, 1421 (1976)Google Scholar
  32. 31. b)
    Tanaka, T., Takemura, T.: Polym. J. 12, 255 (1980)Google Scholar
  33. 32.
    Bassett, D. C., Kalifa, B. A.: Polymer 17, 275 (1976)Google Scholar
  34. 33.
    Zubov, Yu. A., Ozerin, N. A., Bakeev, N. F.: Dokl. Akad. Nauk. SSSR 221, 121 (1975)Google Scholar
  35. 34.
    Elyashevich, G. K., Poddubny, V. I., Baranov, V. G.: Dokl. Akad. Nauk. SSSR 236, 1373 (1978)Google Scholar
  36. 35.
    Elyashevich, G. K., Baranov, V. G., Frenkel, S. Ya.: Fizika Tv. Tela 16, 2071 (1974)Google Scholar
  37. 36.
    Poddubny, V. I. et al.: Polym. Eng. Sci. 20, 206 (1980)Google Scholar
  38. 37.
    Flory, P. J.: Principles of polymer chemistry, New York: Cornell Univ. Press 1953Google Scholar
  39. 38.
    Mandelkern, L.: Crystallization of polymers, New York: McGraw-Hill 1964Google Scholar
  40. 39.
    Clough, S. B.: J. Macromol. Sci. B 4, 199 (1970)Google Scholar
  41. 40.
    Cesari, M. et al.: J. Polym. Sci., Polym. Lett. 14, 107 (1976)Google Scholar
  42. 41.
    Pennings, A. J.: J. Phys. Chem. Solids 1967, 389Google Scholar
  43. 42.
    Wunderlich, B.: Polymer 5, 611 (1964)Google Scholar
  44. 43.
    Kardos, J. L. et al.: J. Polym. Sci. A 2, 2061 (1971)Google Scholar
  45. 44.
    Godovsky, Yu. K. et al.: Vysokomol. Soedin. B 13, (1971); A 15, 813 (1973)Google Scholar
  46. 45.
    Levin, V. Yu. et al.: Vysokomol. Soedin. B 17, 244 (1975)Google Scholar
  47. 46.
    Hill, M. J., Keller, A.: J. Macromol. Sci. B 3, 153 (1969)Google Scholar
  48. 47.
    Perkins, W. G. et al.: Polym. Eng. Sci. 16, 200 (1976)Google Scholar
  49. 48.
    Frenkel, S., Baranov, V. G.: Brit. Polym. J. 16, 228 (1977)Google Scholar
  50. 49.
    Wulf, A., Rocco, A. G. de: J. Chem. Phys. 55, 12 (1971)Google Scholar
  51. 50.
    Volkenstein, M. V.: Configurational statistics of polymer chains, New York: Interscience 1963Google Scholar
  52. 51.
    Litvina, T. G., Elyashevich, G. K., Baranov, V. G.: Vysokomol. Soedin. A 24 (1982)Google Scholar
  53. 52.
    Clough, S. B.: Polym. Lett. 8, 519 (1970)Google Scholar
  54. 53.
    Smit, P. P. A.: Kolloid-Z., Z. Polym. 250, 8 (1972)Google Scholar
  55. 54.
    Beatty, C. L. et al.: Macromolecules 8, 547 (1975)Google Scholar
  56. 55.
    Pennings, A. J. and Zwijnenburg, A.: J. Polym. Sci.: Polym. Phys. Ed. 7, 1011 (1979)Google Scholar
  57. 56.
    Poddubny, V. I. et al.: Vysokomol. Soedin. B 21, 818 (1979)Google Scholar
  58. 57.
    Krüger, J. K. et al.: Polymer 21, 620 (1980)Google Scholar
  59. 58.
    Flory, P. J.: J. Chem. Phys. 15, 397 (1947)Google Scholar
  60. 59.
    Frenkel, J.: Kinetic theory of liquids, New York: Dover Publ. 1955Google Scholar
  61. 60.
    Frenkel, S. Ya., Elyashevich, G. K.: Vysokomol. Soedin. A 13, 493 (1971)Google Scholar
  62. 61.
    Frenkel, S. Ya., Elyashevich, G. K., in: Relaxation phenomena in polymers, pp. 229, 234, 240, Leningrad; Khimiya 1972Google Scholar
  63. 62.
    Elyashevich, G. K., Frenkel, S. Ya.: Vysokomol. Soedin. A 15, 2752 (1973)Google Scholar
  64. 63.
    Gerassimov, V. S. et al.: Vysokomol. Soedin. B 18, 316 (1976)Google Scholar
  65. 64.
    Keller, A.: J. Polym. Sci., Polym. Symp. 58, 395 (1977)Google Scholar
  66. 65.
    Frenkel, S.: Pure Appl. Chem. 38, 117 (1974)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Galina K. Elyashevich
    • 1
  1. 1.Institute of Macromolecular Compounds of the Academy Science of the USSRLeningradUSSR

Personalised recommendations