Advertisement

Energetics of microbial fixation of dinitrogen

  • Vincent P. Gutschick
Conference paper
Part of the Advances in Biochemical Engineering book series (ABE, volume 21)

Abstract

I review metabolic sources of reductant and ATP used by nitrogenase for all known classes of metabolism occurring among N2-fixing organisms. The discussion centers on free-living organisms preferentially over symbionts. I quantify the amounts of substrate required and convert these to free-energy efficiencies; anaerobes are seen as efficient in this sense. I clarify some thermodynamics of intermediate reactions, especially the need for ATP and the ability of NAD(P)H to reduce nitrogenase through ferredoxin. Three more contributions to net energy costs can be quantified: capital synthesis, assimilation and maintenance (two types). Several distinct loss routes for reactants and products exist, and I quantify their impacts. From net energy costs I calculate the decreases in substrate yields and increases in generation times. I review measurements of costs via these impacts in vitro and in vivo and discuss the orgins and amounts of variations due to important environmental conditions. The need for control of fixation by combined nitrogen, oxygen, and temperature is evident, but assessing its optimality requires critical definition and experimentation. The energy-intensiveness of fixation, especially relative to other sources of fixed nitrogen, has many specific consequences for ecological competitiveness of fixers. In whole-ecosystem function, a shared failure of metabolic strategies may exist, reducing the supportable biomass. In exploitation by humans via field crops and contained culture, ultimate consequences include restriction of the economic niche for biological fixation relative to current abiological alternatives such as chemical fertilizers. Lastly, I review the status of experimental studies of varied aspects of energetics and point out many opportunities for specific studies.

Keywords

Nitrogen Fixation General Metabolism MoFe Protein Dinitrogen Fixation Mole Glucose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Symbols

a

fraction of fixed nitrogen lost

A

assimilation cost, in specified units of ATP or of substrate per unit of nitrogen fixed

ATP: 2e

yield of ATP per electron pair transferred in (oxidative) phosphorylation

C

capital cost, in specified units of ATP or of substrate per unit of nitrogen fixed

C:N

ratio of atoms of carbon to atoms of nitrogen in cell biomass or in soil

D

density of cells growing in a chemostat

e

electron

ED

Entner-Duodoroff path of glycolysis

EMP

Embden-Meyerhof-Parnas path of glycolysis

ETP

electron-transport-dependent phosphorylation

F

formal concentration in gram formula weights per liter

f

fraction of nitrogen by weight contained in cell

Fd

ferredoxin

ΔG

free energy change in reaction

ΔGo

standard free energy change at standard concentrations

ΔGo

as above except at pH 7

ΔGfo

free energy of formation relative to elements

GDH

glutamate dehydrogenase

GS/GOGAT

glutamine synthetase/glutamine oxoglutarate aminotransferase

[2H]

reductant equivalent to two electrons; unspecified carrier

hν

photon as a unit

M

molar concentration

M

maintenance cost, in specified units of ATP or of substrate per unit of nitrogen fixed

m

maintenance rate in moles substrate per gram of cells per hour

N2ase

nitrogenase enzyme, both Fe protein and MoFe protein

O

operational cost, in specified units of ATP or of substrate per unit of nitrogen fixed

P

pressure of reactant or product

P680

photosynthetic reaction center in Photosystem II

P700

same, for photosystem I

P:O

ratio of ATP produced per oxygen atom reduced. Same as ATP:2et-

PP

photophosphorylation

PS I

photosystem I

PS II

photosystem II

Q

partition coefficient of chemical reaction

Qj

metabolic rate, moles of substrate j used per gram of cells per hour

SLP

substrate-level phosphorylation

TCA

tricarboxylic acid (cycle)

x

substrate use in grams of substrate per gram of cells produced

X

primary electron accepting site in photosystem II

x

substrate use extrapolated to infinite growth rate

Yi(j)

growth yield, grams of cells produced per mole of substrate i with j as source of nitrogen

Yi

growth yield extrapolated to infinite rate of growth, thus excluding maintenance costs

Z

electron-donor site in photosystem I

α

fractional efficiency of coupling the energy of ATP hydrolysis to fixation

E

potential of reduction or oxidation, as specified

Eo

standard potential

ηfop

free-energy efficiency of nitrogen fixation, operational energy use only

ηft

free-energy efficiency of nitrogen fixation, total energy use

ηg

free-energy efficiency of general energy metabolism in cell

μ

specific growth rate, dX/dt 1/X [g g−1 h−1

μ

specific growth rate after decrease due to energy drain of fixation

[i]

concentration of compound i

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9 References

  1. 1.
    Meyerhof, O., Burk, D.: Z. phys. Chem., Abt. A, 139, 117 (1928)Google Scholar
  2. 2.
    Daesch, G., Mortenson, L. E.: J. Bacteriol. 96, 346 (1967)Google Scholar
  3. 3.
    Dalton, H., Postgate, J. R.: J. Gen. Microbiol. 56, 307 (1969)Google Scholar
  4. 4.
    Hill, S., Drozd, J. W., Postgate, J. R.: J. Appl. Chem. Biotechnol. 22, 541 (1972)Google Scholar
  5. 5.
    Bergersen, F. J.: J. Gen. Microbiol. 84, 412 (1974)Google Scholar
  6. 6.
    Hill, S.: J. Gen. Microbiol. 93, 335 (1976)Google Scholar
  7. 7.
    Hill, S.: ibid. 95, 297 (1976)Google Scholar
  8. 8.
    Okon, Y. et al.: J. Gen. Microbiol. 98, 87 (1977)PubMedGoogle Scholar
  9. 9.
    Berndt, H. et al.: Arch. Microbiol. 108, 17 (1976)Google Scholar
  10. 10.
    Gutschick, V. P.: BioScience 28, 521 (1978)Google Scholar
  11. 11.
    Gutschick, V. P.: Energy flows in the nitrogen cycle, especially in fixation. In: Nitrogen fixation, Volume I, p. 17. Free-living systems and chemical models. Newton, W. E., Orne-Johnson, W. H. (eds.). Baltimore: University Park Press 1980Google Scholar
  12. 12.
    McNary, J. E., Burris, R. H.: J. Bacteriol. 84, 598 (1962)Google Scholar
  13. 13.
    Hardy, R. W. F., D'Eustachio, A. J.: Biophys. Res. Commun. 15, 314 (1964)Google Scholar
  14. 14.
    Mortenson, L. E.: Proc. Nat. Acad. Sci. U.S.A. 52, 272 (1964)Google Scholar
  15. 15.
    Jensen, H. L.: Proc. Linn. Soc. N.S.W. 65, 1 (1940)Google Scholar
  16. 16.
    Jensen, H. L.: Tidsskr. Planteavl. 53, 622 (1950)Google Scholar
  17. 17.
    Mulder, E. G., Brotonegoro, S.: Free-living heterotrophic nitrogen-fixing bacteria. In: The biology of nitrogen fixation. Quispel, A. (ed.), p. 37. Amsterdam: North-Holland 1974Google Scholar
  18. 18.
    Mishustin, E. N., Emtsev, V. T.: Anaerobic nitrogen-fixing bacteria of different soil types. In: Nitrogen fixation by free-living microorganisms. Stewart, W. D. P. (ed.), p. 29. Cambridge Univ. Press 1975Google Scholar
  19. 19.
    Gutschick, V. P.: Am. Nat. (in press 1981)Google Scholar
  20. 20.
    Jensen, V., Holm, E.: Associative growth of nitrogen-fixing bacteria with other microorganisms. In: Nitrogen fixation by free-living microorganisms. Stewart, W. D. P. (ed.), p. 101. Cambridge Univ. Press. 1975Google Scholar
  21. 21.
    Hardy, R. W. F., Havelka, U. D.: Science 188, 633 (1975)Google Scholar
  22. 22.
    Evans, L. T.: Am. Sci. 68, 344 (1980)Google Scholar
  23. 23.
    Nasyrov, Y. S.: Ann. Rev. Plant Physiol. 29, 215 (1978)Google Scholar
  24. 24.
    Sinclair, T. R., de Wit, C. T.: Agron. J. 68, 319 (1976)Google Scholar
  25. 25.
    Talley, S. N., Rains, D. W.: Azolla as a nitrogen source for temperate rice. In: Nitrogen fixation, Vol. II, Symbiotic associations and cyanobacteria. Newton, W. E., Orme-Johnson, W. H. (eds.), p. 311. Baltimore: University Park Press 1980Google Scholar
  26. 26.
    Burlew, J. S. (ed.): Algal culture. Washington, D. C.: Carnegie Institute of Washington 1953Google Scholar
  27. 27.
    Kollman, V. H.: Feasibility of algae production. Final report to the Four Corners Regional Commission (New Mexico) 1976Google Scholar
  28. 28.
    Gutschick, V. P.: Long-term strategies for supplying nitrogen to crops. Report LA-6700-MS. Los Alamos, New Mexico, Los Alamos Scientific Laboratory 1977Google Scholar
  29. 29.
    Heichel, G. H.: Am. Sci. 64, 64 (1976)Google Scholar
  30. 30.
    Pimentel, D., Terhune, E. C: Ann. Rev. Energy 2, 171 (1977)Google Scholar
  31. 31.
    Parker, C. A.: Nature (London) 173, 780 (1954)Google Scholar
  32. 32.
    Dalton, H., Postgate, J. R.: J. Gen. Microbiol. 54, 463 (1969)Google Scholar
  33. 33.
    Schubert, K. R., Evans, H. J.: Proc. Nat. Acad. Sci. U.S.A. 73, 1207 (1976)Google Scholar
  34. 34.
    Hanus, F. J., Maier, R. J., Evans, H. J.: ibid. 76, 1788 (1979)Google Scholar
  35. 35.
    Phillips, D. A.: Ann. Rev. Plant Physiol. 31, 29 (1980)Google Scholar
  36. 36.
    Atkins, C. A., Herridge, D. F., Pate, J. S.: The economy of carbon and nitrogen in nitrogen-fixing annual legumes. In: Potential use of isotopes in the study of biological dinitrogen fixation, p. 211. Vienna: Int. Atomic Energy Agency 1978Google Scholar
  37. 37.
    Dalton, H.: Crit. Rev. Microbiol. 3, 183 (1974)Google Scholar
  38. 38.
    La Rue, T. A.: The bacteria. In: A treatise on dinitrogen fixation, Sec. Ill, Biology. (Hardy, R. W. F., Silver, W. S., eds.), p. 19. New York: Wiley-Interscience 1977Google Scholar
  39. 39.
    Mulder, E. G.: Physiology and ecology of free-living, nitrogen-fixing bacteria. In: Nitrogen fixation by free-living microorganisms (Stewart, W. D. P., ed.), p. 3. Cambridge: Cambridge Univ. Press 1975Google Scholar
  40. 40.
    Postgate, J. R.: Nitrogen fixation. London: Edward Arnold Publishers 1978Google Scholar
  41. 41.
    Stewart, W. D. P.: Blue-green algae. In: The biology of nitrogen fixation (Quispel, A., ed.), p. 202. Amsterdam: North-Holland 1974Google Scholar
  42. 42.
    Stewart, W. D. P.: Blue-green algae. In: A treatise on dinitrogen fixation, Sect. HI, Biology (Hardy, R. W. F., Silver, W. S., eds.), p. 63. New York: Wiley-Interscience 1977Google Scholar
  43. 43.
    Dilworth, M. J.: Ann. Rev. Plant Physiol. 25, 81 (1974)Google Scholar
  44. 44.
    Postgate, J. R.: Fixation by free-living microbes: physiology. In: The chemistry and biochemistry of nitrogen fixation. (Postgate, J. R., ed.), p. 161. London: Plenum Press 1971Google Scholar
  45. 45.
    Yamada, T., Sakaguchi, K.: Arch. Microbiol. 124, 161 (1980)Google Scholar
  46. 46.
    Thauer, R. K., Jungermann, K., Decker, K.: Bacteriol. Rev. 41, 100 (1977)PubMedGoogle Scholar
  47. 47.
    Bryant, M. P. et al.: Arch. Mikrobiol. 59, 20 (1967)Google Scholar
  48. 48.
    Reddy, C. A., Bryant, M. P., Wolin, M. J.: J. Bacteriol. 109, 539 (1972)Google Scholar
  49. 49.
    Raju, P. N., Evans, H. J., Seidler, R. J.: Proc. Nat. Acad. Sci. U.S.A. 69, 3474 (1972)Google Scholar
  50. 50.
    Hino, S., Wilson, P. W.: J. Bacteriol. 75, 403 (1958)PubMedGoogle Scholar
  51. 51.
    Mishustin, E. N., Shilnikova, V. K.: Biological fixation of atmospheric nitrogen. London: Macmillan Press 1971Google Scholar
  52. 52.
    Klucas, R.: Can. J. Microbiol. 18, 1845 (1972)Google Scholar
  53. 53.
    De Bont, J. A. M., Mulder, E. G.: J. Gen. Microbiol. 83, 113 (1974)Google Scholar
  54. 54.
    Evans, M. C. W., Buchanan, B. B., Arnon, D. I.: Proc. Nat. Acad. Sci. U.S.A. 55, 928 (1966)Google Scholar
  55. 55.
    Pratt, D. C, Frenkel, A. W.: Plant Physiol. 34, 333 (1959)Google Scholar
  56. 56.
    Smitz, A. J., London, J., Stanier, R. Y.: J. Bacteriol. 94, 972 (1967)PubMedGoogle Scholar
  57. 57.
    Hoare, D. S., Hoare, S. L., Smith, A. J.: Heterotrophic potentialities of the blue-green algae. In: Taxonomy and biology of blue-green algae (Desikachary, T. V., ed.), p. 501. Madras: Univ. Madras Press 1972Google Scholar
  58. 58.
    Khoja, T., Whitton, B. A.: Arch. Mikrobiol. 79, 280 (1971)Google Scholar
  59. 59.
    Stanier, R. Y.: Carlsberg Res. Commun. 42, 11 (1977)Google Scholar
  60. 60.
    Cohen, Y., Padan, E., Shilo, M.: J. Bacteriol. 123, 855 (1975)Google Scholar
  61. 61.
    Garlick, S., Oren, A., Padan, E.: ibid. 129, 623 (1977)Google Scholar
  62. 62.
    Padan, E.: Ann. Rev. Plant Physiol. 30, 27 (1979)Google Scholar
  63. 63.
    Burns, R. C.: Mechanism of dinitrogen reaction. In: A treatise on dinitrogen fixation, Sects. I–II, Inorganic and physical chemistry and biochemistry (Hardy, R. W. F., Bottomley, F., Burns, R. C, eds.), p. 491. New York: Wiley-Interscience 1979Google Scholar
  64. 64.
    Burns, R. C, Hardy, R. W. F.: Nitrogen fixation in bacteria and higher plants, Berlin: Springer 1975Google Scholar
  65. 65.
    Burris, R. H., Orme-Johnson, W. H.: Mechanism of biological dinitrogen fixation. In: Proc. First Internat. Symp. Nitrogen Fixation (Newton, W. E., Nyman, C. J., eds.), p. 208. Pullman: Washington State Univ. Press 1976Google Scholar
  66. 66.
    Dalton, H.: Utilization of inorganic nitrogen by microbial cells. In: Microbial biochemistry (Quayle, J. R., ed.), p. 227. Baltimore: University Park Press 1979Google Scholar
  67. 67.
    Eady, R., Smith, B. E.: Physico-chemical properties of nitrogenase and its components. In: A treatise on dinitrogen fixation, Sects. I–II, Inorganic and physical chemistry and biochemistry (Hardy, R. W. F., Bottomley, F., Burns, R. C, eds.), p. 399. New York: Wiley-Interscience 1979Google Scholar
  68. 68.
    Hardy, R. W. F.: Reducible substrates of nitrogenase. In: A treatise on dinitrogen fixation, Sects. I–II, Inorganic and physical chemistry and biochemistry (Hardy, R. W. F., Bottomley, F., Burns, R. C, eds.), p. 515. New York: Wiley-Interscience 1979Google Scholar
  69. 69.
    Ljones, T.: The enzyme system. In: The biology of nitrogen fixation (Quispel, A., ed.), p. 617. Amsterdam: North-Holland 1974Google Scholar
  70. 70.
    Mortenson, L. E., Thorneley, R. N. F.: Ann. Rev. Biochem. 48, 387 (1979)Google Scholar
  71. 71.
    Orme-Johnson, W. H., Davis, L. C.: Current topics and problems in the enzymology of nitrogenase. In: Iron-sulfur proteins, Vol. III (Lovenberg, W., ed.), p. 15. New York: Academic Press 1977Google Scholar
  72. 72.
    Winter, H. C, Burris, R. H.: Ann. Rev. Microbiol. 27, 409 (1976)Google Scholar
  73. 73.
    Robson, R. L., Postgate, J. R.: Ann. Rev. Plant Physiol. 34, 183 (1980)Google Scholar
  74. 74.
    Drozd, J. W., Postgate, J. R.: J. Gen. Microbiol. 60, 427 (1970)Google Scholar
  75. 75.
    Drozd, J., Postgate, J. R.: J. Gen. Microbiol. 63, 63 (1970)Google Scholar
  76. 76.
    Haaker, H., Veeger, C: Eur. J. Biochem. 77, 1 (1977)Google Scholar
  77. 77.
    Scherings, G., Haaker, H., Veeger, C. E.: ibid. 77, 621 (1977)Google Scholar
  78. 78.
    Robson, R. L.: Biochem. J. 181, 569 (1979)Google Scholar
  79. 79.
    Ruvkun, G. B., Ausubel, F. M.: Proc. Nat. Acad. Sci. U.S.A. 77, 191 (1980)Google Scholar
  80. 80.
    Chen, J.-S., Multani, J. S., Mortenson, L. E.: Biochim. Biophys. Acta 310, 51 (1973)Google Scholar
  81. 81.
    Zumft, W. G., Mortenson, L. E., Palmer, G.: Eur. J. Biochem. 46, 525 (1974)Google Scholar
  82. 82.
    Ljones, T.: FEBS Lett. 98, 1 (1979)Google Scholar
  83. 83.
    Ljones, T., Burris, R. H.: Biochim. Biophys. Acta 275, 93 (1972)Google Scholar
  84. 84.
    Mortenson, L. E., Walker, M. N., Walker, G. A.: Effects of magnesium di-and triphosphates on the structures and electron transport function of clostridial nitrogenase. In: Proc. First Internat. Symp. Nitrogen Fixation (Newton, W. E., Nyman, C. J., eds.), p. 117. Pullman: Washington State Univ. Press 1976Google Scholar
  85. 85.
    Hadfield, K. L., Bulen, W. A.: Biochemistry 8, 5103 (1969)Google Scholar
  86. 86.
    Hardy, R. W. F., Knight, E., D'Eustachio, A. J.: Biochem. Biophys. Res. Coramun. 20, 539 (1965)Google Scholar
  87. 87.
    Hoch, G. E., Little, H. N., Burris, R. H.: Nature (London) 179, 430 (1957)Google Scholar
  88. 88.
    Yates, M. G., Walker, C. C.: Hydrogenase activity and hydrogen evolution by nitrogenase in nitrogen-fixing Azotobacter chroococcum. In: Nitrogen fixation, Vol. I, Free-living systems and chemical models (Newton, W. E., Orme-Johnson, W. H., eds.)., p. 95. Baltimore: University Park Press 1980Google Scholar
  89. 89.
    Rivera-Ortiz, J. M., Burris, R. H.: J. Bacteriol. 123, 537 (1975)Google Scholar
  90. 90.
    Evans, H. J. et al.: Energy coupling efficiency of symbiotic nitrogen fixation. In: Genetic engineering for nitrogen fixation (Hollaender, A., ed.), p. 333. New York: Plenum Press 1977Google Scholar
  91. 91.
    Schrauzer, G. N.: Biological nitrogen fixation: model studies and mechanism. In: Proc. First Internat. Symp. Nitrogen Fixation (Newton, W. E., Nyman, C. J., eds.), p. 79. Pullman: Washington State Univ. Press 1976Google Scholar
  92. 92.
    Bulen, W. A.: Nitrogenase from Azotobacter vinelandii and reactions affecting mechanistic interpretations. Ibid. In: p. 177Google Scholar
  93. 93.
    Schrauzer, G. N.: Nitrogenase model systems and the mechanism of biological nitrogen reduction: advances since 1974. In: Recent developments in nitrogen fixation (Newton, W. E., Postgate, J. R., Rodriguez-Barrueco, C, eds.), p. 109. London: Academic 1977Google Scholar
  94. 94.
    Nikonova, L. A., Shilov, A. E.: Dinitrogen fixation in homogeneous protic media. Ibid. In: p. 41Google Scholar
  95. 95.
    Cadle, R. D.: Atmospheric carbon monoxide. In: Carbon and the biosphere (Woodwell, G. M., Pecan, E. V., eds.), p. 136. Washington, D. C.: U.S. Atomic Energy Commission 1973Google Scholar
  96. 96.
    Nozhevnikova, A. N., Yurganov, L. N.: Microbiological aspects of regulating the carbon monoxide content in the earth's atmosphere. In: Adv. microbial ecology, Vol. 2 (Alexander, M., ed.), p. 203. New York: Plenum Press 1978Google Scholar
  97. 97.
    Wilson, P. W.: The biochemistry of symbiotic nitrogen fixation, Madison: Univ. Wisconsin Press 1940Google Scholar
  98. 98.
    Wilson, P. W., Burris, R. H.: Bacteriol. Rev. 11, 41 (1947)Google Scholar
  99. 99.
    Dixon, R. O.: Arch. Microbiol. 85, 193 (1972)Google Scholar
  100. 100.
    Kennedy, I. R.: Integration of nitrogenase in cellular metabolism. In: A treatise on dinitrogen fixation, Sects. I–II, Inorganic and physical chemistry and biochemistry (Hardy, R. W. F., Bottomley, F. C, Burns, R. C, eds.), p. 635. New York: Wiley-Interscience 1979Google Scholar
  101. 101.
    Yoch, D. C: Electron-transport systems coupled to nitrogenase. Ibid. In: p. 605Google Scholar
  102. 102.
    Doelle, H. W.: Bacterial metabolism. New York: Academic 1969Google Scholar
  103. 103.
    Gunsalus, I. C, Stanier, R. Y. (eds.): The bacteria: a treatise on structure and function, Vol. 2, Metabolism. New York: Academic 1961Google Scholar
  104. 104.
    Gottschalk, G., Andreesen, J. R.: Energy metabolism in anaerobes. In: Microbial biochemistry (Quayle, J. R., ed.), p. 85. Baltimore: University Park Press 1979Google Scholar
  105. 105.
    Jungermann, K., et al.: Biochim. Biophys. Acta 305, 268 (1973)Google Scholar
  106. 106.
    Benemann, J. R., Valentine, R. C: Adv. Microb. Physiol. 8, 59 (1972)Google Scholar
  107. 107.
    Evans, H. J., Phillips, D. A.: Reductants for nitrogenase and relationships to cellular electron transport. In: Nitrogen fixation by free-living microorganisms (Stewart, W. D. P., ed.), p. 389. Cambridge: Cambridge Univ. Press 1975Google Scholar
  108. 108.
    Knight, E., Jr., D'Eustachio, A. J., Hardy, R. W. F.: Biochim. Biophys. Acta 113, 626 (1966)Google Scholar
  109. 109.
    Yoch, D. C, Valentine, R. C: Ann. Rev. Microbiol. 26, 139 (1972)Google Scholar
  110. 110.
    Haaker, H., De Kok, A., Veeger, C: Biochim. Biophys. Acta 357, 344 (1974)Google Scholar
  111. 111.
    Benemann, J. R. et al.: ibid. 226, 205 (1971)Google Scholar
  112. 112.
    Reddy, C. A., Bryant, M. P., Wolin, M. J.: J. Bacteriol. 110, 126 (1972)Google Scholar
  113. 113.
    Neyra, C. A., Van Berkum, P.: Can. J. Microbiol. 23, 306 (1977)Google Scholar
  114. 114.
    Scott, D. B., Scott, C. A., Döbereiner, J.: Arch. Microbiol. 121, 141 (1979)Google Scholar
  115. 115.
    Rigaud, J. et al.: J. Gen. Microbiol. 77, 137 (1973)Google Scholar
  116. 116.
    Zablotowicz, R. M., Eskew, D. L., Focht, D. D.: Can. J. Microbiol. 24, 757 (1978)Google Scholar
  117. 117.
    Hill, S., Kavanagh, E. P.: J. Bacteriol. 141, 470 (1980)Google Scholar
  118. 118.
    Jones, C. W., Ackrell, B. A. C, Erickson, S. K..: Biochim. Biophys. Acta 245, 54 (1971)Google Scholar
  119. 119.
    Haddock, B. A., Jones, C. W.: Bacteriol. Rev. 41, 47 (1977)Google Scholar
  120. 120.
    Laane, C. et al.: FEBS Lett. 103, 328 (1979)PubMedGoogle Scholar
  121. 121.
    Veeger, C. et al.: Membrane energization and nitrogen fixation in Azotobacter vinelandii and Rhizobium leguminosarum. In: Nitrogen fixation, Vol. I, Free-living systems and chemical models (Newton, W. E., Orme-Johnson, W. H., eds.), p. 111. Baltimore: University Park Press 1980Google Scholar
  122. 122.
    Wittenberg, J. B. et al.: J. Biol. Chem. 249, 4057 (1974)Google Scholar
  123. 123.
    Appleby, C. A. et al.: Role of leghemoglobin in symbiotic N2 fixation. In: Proc. First Internat. Symp. Nitrogen Fixation (Newton, W. E., Nyman, C. J., eds.), p. 274. Pullman: Washington State Univ. Press 1976Google Scholar
  124. 124.
    Evans, H. J., Russell, S. A.: Physiological chemistry of symbiotic nitrogen fixation by legumes. In: The chemistry and biochemistry of nitrogen fixation (Postgate, J. R., ed.), p. 191. New York: Plenum Press 1971Google Scholar
  125. 125.
    Bergersen, F. J., Turner, G. L.: Biochim. Biophys. Acta 141, 507 (1967)Google Scholar
  126. 126.
    Trinchant, J.-C, Rigaud, J.: Physiol. Veg. 17, 547 (1979)Google Scholar
  127. 127.
    Pelroy, R. A., Rippka, R., Stanier, R. Y.: Arch. Microbiol. 87, 303 (1972)Google Scholar
  128. 128.
    Smith, R. V., Noy, R. J., Evans, M. C. W.: Biochim. Biophys. Acta 253, 104 (1971)Google Scholar
  129. 129.
    Bothe, H.: Ber. Dtsch. Bot. Ges. 83, 421 (1970)Google Scholar
  130. 130.
    Codd, G. A., Rowell, P., Stewart, W. D. P.: Biochem. Biophys. Res. Commun. 61, 424 (1974)Google Scholar
  131. 131.
    Stewart, W. D. P.: N2 fixation and photosynthesis in microorganisms. In: Encyclopedia of plant physiology, New series, Vol. 6 (Gibbs, M., Latzko, E., eds.), p. 457. Berlin: Springer 1979Google Scholar
  132. 132.
    Fay, P.: Arch. Mikrobiol. 67, 62 (1969)Google Scholar
  133. 133.
    Dunn, J. H., Wolk, C. P.: J. Bacteriol. 103, 153 (1970)Google Scholar
  134. 134.
    Fay, P.: The heterocyst. In: The biology of blue-green algae (Carr, N. G., Whitton, B. A., eds.), p. 238. Berkeley: Univ. California Press 1973Google Scholar
  135. 135.
    Donze, M., Havemann, J., Schiereck, P.: Biochim. Biophys. Acta 256, 157 (1972)PubMedGoogle Scholar
  136. 136.
    Fogg, G. E.: Nitrogen fixation. In: Algal physiology and biochemistry (Stewart, W. D. P., ed.), p. 560. Berkeley: Univ. California Press 1974Google Scholar
  137. 137.
    Wolk, C. P., Wojcuich, E.: Planta 97, 126 (1971)Google Scholar
  138. 138.
    Winkenbach, F., Wolk, C. P.: Plant Physiol. 52, 480 (1973)Google Scholar
  139. 139.
    Beevers, L., Hageman, R. H.: Ann. Rev. Plant Physiol. 20, 495 (1969)Google Scholar
  140. 140.
    Thomas, J. et al.: J. Bacteriol. 129, 1545 (1977)Google Scholar
  141. 141.
    Fogg, G. E., Tun, T.: Proc. R. Soc. London, Ser. B, 153, 111 (1960)Google Scholar
  142. 142.
    Bottomley, P. J., Stewart, W. D. P.: New Phytol. 79, 625 (1977)Google Scholar
  143. 143.
    Lex, M., Stewart, W. D. P.: Biochim. Biophys. Acta 292, 436 (1973)Google Scholar
  144. 144.
    Apte, S. K., Rowell, P., Stewart, W. D. P.: Proc. R. Soc. London, Ser. B 200, 1 (1978)Google Scholar
  145. 145.
    Lockau, W., et al.: Biochim. Biophys. Acta 502, 298 (1978)Google Scholar
  146. 146.
    Lex, M., Silvester, W. B., Stewart, W. D. P.: Proc. R. Soc. London, Ser. B 180, 87 (1972)Google Scholar
  147. 147.
    Cusanovich, M. A., Edmondson, D. E.: Biochem. Biophys. Res. Commun. 45, 327 (1971)Google Scholar
  148. 148.
    Evans, M. C. W., Smith, R. V.: J. Gen. Microbiol. 65, 95 (1971)Google Scholar
  149. 149.
    Arnon, D. I., Yoch, D. C: Photosynthetic bacteria. In: The biology of nitrogen fixation (Quispel, A., ed.), p. 168. Amsterdam: North-Holland 1974Google Scholar
  150. 150.
    Bennett, R., Rigopoulos, N., Fuller, R. C: Proc. Nat. Acad. Sci. U.S.A. 52, 762 (1964)Google Scholar
  151. 151.
    Winter, H. C, Arnon, D. I.: Biochim. Biophys. Acta 197, 170 (1970)Google Scholar
  152. 152.
    Wilson, P. W., Burris, R. H.: Bacteriol. Rev. 11, 41 (1947)Google Scholar
  153. 153.
    Wilson, P. W.: Asymbiotic nitrogen fixation. In: Handbuch der Pflanzenphysiologie, Vol. 8 (Ruhland, W., ed.), p. 9. Berlin: Springer 1958Google Scholar
  154. 154.
    Bayliss, N. S: Aust. J. Biol. Sci. 9, 364 (1956)Google Scholar
  155. 155.
    Bergersen, F. J.: The central reactions of nitrogen fixation. In: Biological nitrogen fixation in natural and agricultural habitats (Lie, T. A., Mulder, E. G., eds.), p. 511. The Hague: Martinus Nijhoff 1971Google Scholar
  156. 156.
    Bulen, W. A., LeComte, J. R.: Proc. Nat. Acad. Sci. U.S.A. 56, 979 (1966)Google Scholar
  157. 157.
    Mortenson, L. E.: Biochim. Biophys. Acta 127, 18 (1966)Google Scholar
  158. 158.
    Andersen, K., Shanmugam, K. T.:.J. Gen. Microbiol. 103, 107 (1977)Google Scholar
  159. 159.
    Winter, H. C, Burris, R. H.: J. Biol. Chem. 243, 940 (1968)Google Scholar
  160. 160.
    Kennedy, I. R., Morris, J. A., Mortenson, L. E.: Biochim. Biophys. Acta 153, 777 (1968)Google Scholar
  161. 161.
    Watt, G. D., Bulen, W. A., Burns, A., Hadfield, K. L.: Biochemistry 14, 4262 (1975)Google Scholar
  162. 162.
    Shanmugam, K. T., Valentine, R. C: Proc. Nat. Acad. Sci. U.S.A. 72, 136 (1975)Google Scholar
  163. 163.
    Morris, J. G.: A biologist's physical chemistry. London: Edward Arnold Publishers 1968Google Scholar
  164. 164.
    Senez, J. C: Bacteriol. Rev. 26, 95 (1962)Google Scholar
  165. 165.
    Burk, D.: J. Gen. Physiol. 10, 559 (1927)Google Scholar
  166. 166.
    Bassham, J. A., Krause, G. H.: Biochim. Biophys. Acta 189, 207 (1969)Google Scholar
  167. 167.
    Umbarger, H. E.: Science 123, 848 (1956)Google Scholar
  168. 168.
    Yates, R. A., Pardee, A. B.: J. Biol. Chem. 221, 757 (1956)PubMedGoogle Scholar
  169. 169.
    Biggins, D. R., Dilworth, M. J.: Biochim. Biophys. Acta 156, 285 (1968)Google Scholar
  170. 170.
    Carnahan, J. E. et al.: ibid. 44, 520 (1960)Google Scholar
  171. 171.
    Stouthamer, A. H.: The search for correlation between theoretical and experimental growth yields. In: Microbial biochemistry (Quayle, J. R., ed.), p. 1. Baltimore: University Park Press 1979Google Scholar
  172. 172.
    Tempest, D. W., Neijssel, O. M.: Eco-physiological aspects of microbial growth in aerobic nutrient-limited environments. In: Advances in microbial ecology, Vol. 2 (Alexander, M., ed.), p. 105. New York: Plenum Press 1978Google Scholar
  173. 173.
    Knowles, C. J., Smith, L.: Biochim. Biophys. Acta 197, 152 (1970)Google Scholar
  174. 174.
    Dixon, R. O.: Arch. Microbiol. 85, 193 (1972)Google Scholar
  175. 175.
    Schubert, K. R., Jennings, N. T., Evans, H. J.: Plant Physiol. 61, 398 (1978)Google Scholar
  176. 176.
    Thorndike, E. H.: Energy and environment: a primer for scientists and engineers, Reading, Mass.: Addison-Wesley 1976Google Scholar
  177. 177.
    Parson, W. W.: Photochem. Photobiol. 28, 389 (1978)Google Scholar
  178. 178.
    Ross, R. T.: J. Chem. Phys. 45, 1 (1966)Google Scholar
  179. 179.
    Ross, R. T., Calvin, M.: Biophys. J. 7, 595 (1967)Google Scholar
  180. 180.
    Fogg, G. E. et al.: The blue-green algae. London: Academic Press 1973Google Scholar
  181. 181.
    Pratt, J. M.: J. Theor. Biol. 2, 251 (1962)Google Scholar
  182. 182.
    Leigh, G. J.: Abiological fixation of molecular nitrogen. In: The chemistry and biochemistry of nitrogen fixation (Postgate, J. R., ed.), p. 19. New York: Plenum Press 1971Google Scholar
  183. 183.
    Stiefel, E. I.: The mechanisms of nitrogen fixation. In: Recent developments in nitrogen fixation (Newton, W. E., Postgate, J. R., Rodriguez-Barrueco, C, eds.), p. 69. London: Academic 1977Google Scholar
  184. 184.
    Hardv, R. W. F. et al.: Plant Physiol. 43, 1185 (1968)Google Scholar
  185. 185.
    Upchurch, R. G., Mortenson, L. E.: J. Bacteriol. 143, 274 (1980)Google Scholar
  186. 186.
    Penning de Vries, F. W. T., Brunsting, A. H., van Laar, H. H.: J. Theor. Biol. 45, 339 (1974)Google Scholar
  187. 187.
    Penning de Vries, F. W. T.: Ann. Bot. (London) 39, 77 (1975)Google Scholar
  188. 188.
    Schrauzer, G. N. et al.: J. Am. Chem. Soc. 95, 5582 (1973)Google Scholar
  189. 189.
    Herendeen, R. A., Kary, T., Rebitzer, J.: Science 205, 451 (1979)Google Scholar
  190. 190.
    David, K. A. V., Thomas, J.: Physiological aspects of differentiation in the blue-green alga Anabaena sp. L-31. In: Cellular processes in growth, development, and differentiation, p. 413. Bombay: Bhabha Atomic Research Centre 1972Google Scholar
  191. 191.
    Thomas, J., David, K. A. V.: Differentiation, dedifferentiation and function in a nitrogen-fixing blue-green alga. Ibid. In: p. 401Google Scholar
  192. 192.
    Phillips, D. H., Johnson, M. J.: J. Biochem. Microbiol. Tech. Eng. 3, 227 (1961)Google Scholar
  193. 193.
    Robson, R. L., Postgate, J. R.: Ann. Rev. Plant Physiol. 34, 183 (1980)Google Scholar
  194. 194.
    Lees, H., Postgate, J. R.: J. Gen. Microbiol. 74, 161 (1973)Google Scholar
  195. 195.
    Bergersen, F. J., Turner, G. L.: J. Gen. Microbiol. 91, 345 (1975)Google Scholar
  196. 196.
    Tempest, D. W.: The continuous cultivation of micro-organisms. I. Theory of the chemostat. In: Methods in microbiology, Vol. 2 (Norris, J. R., Ribbons, D. W., eds.), p. 259. London: Academic 1970Google Scholar
  197. 197.
    Allison, R. M., Burris, R. H.: J. Biol. Chem. 224, 351 (1957)Google Scholar
  198. 198.
    Burma, D. P., Burris, R. H.: ibid. 225, 287 (1957)Google Scholar
  199. 199.
    Boland, M. J., Farnden, K. J. F., Robertson, J. G.: Ammonia assimilation in nitrogen-fixing legume nodules. In: Nitrogen fixation, Vol. II, Symbiotic associations and cyanobacteria. (Newton, W. E., Orme-Johnson, W. H., eds.), p. 33. Baltimore: University Park Press 1980Google Scholar
  200. 200.
    Nagatani, H., Shimizu, M., Valentine, R. C: Arch. Mikrobiol. 79, 164 (1971)Google Scholar
  201. 201.
    Schubert, K. R.: to be publishedGoogle Scholar
  202. 202.
    Brill, W. J.: Regulation of nitrogen fixation. In: A treatise on dinitrogen fixation, Sects. I–II, Inorganic and physical chemistry and biochemistry (Hardy, R. W. F., Bottomley, F., Burns, R. C, eds.), p. 765. New York: Wiley-Interscience 1979Google Scholar
  203. 203.
    Fogg, G. E., Pattnaik, H.: Phykos 5, 58 (1966)Google Scholar
  204. 204.
    Fogg, G. E.: Oceanogr. Mar. Biol. 4, 195 (1966)Google Scholar
  205. 205.
    Jones, K., Stewart, W. D. P.: J. Mar. Biol. Assoc. U.K. 49, 475 (1969)Google Scholar
  206. 206.
    Hellebust, J.: Extracellular products. In: Algal physiology and biochemistry (Stewart, W. D. P., ed.), p. 838. Berkeley: Univ. California Press 1974Google Scholar
  207. 207.
    Millbank, J. W.: Associations with blue-green algae. In: The biology of nitrogen fixation (Quispel, A., ed.), p. 238. Amsterdam: North-Holland 1974Google Scholar
  208. 208.
    Federov, M. V., Kalininskaya, T. A.: Mikrobiologiya 30, 1 (1961)Google Scholar
  209. 209.
    O'Gara, F., Shanmugam, K. T.: Biochim. Biophys. Acta 437, 313 (1976)Google Scholar
  210. 210.
    Stouthamer, A. H.: Determinations and significance of molar growth yields. In: Methods in microbiology, Vol. 1 (Norris, J. R., Ribbons, D. W., eds.), p. 629. London: Academic 1969Google Scholar
  211. 211.
    Gunsalus, I. C, Shuster, C. W.: Energy-yielding metabolism in bacteria. In: The bacteria: a treatise on structure and function, Vol. 2: Metabolism (Gunsalus, I. C, Stanier, R. Y., eds.), p. 1. New York: Academic 1961Google Scholar
  212. 212.
    Bauchop, T., Elsden, S. R.: J. Gen. Microbiol. 23, 457 (1960)PubMedGoogle Scholar
  213. 213.
    Forrest, W. W.: Symp. Soc. Gen. Microbiol. 19, 65 (1969)Google Scholar
  214. 214.
    Hardy, R. W. F., Havelka, U. D.: Possible routes to increase the conversion of solar energy to food and feed by grain legumes and cereal grains (crop production): CO2 and N2 fixation, foliar fertilization, and assimilate partitioning. In: Biological solar energy conversion (Mitsui, A., Miyachi, S., San Pietro, A., eds.), p. 299. New York: Academic 1977Google Scholar
  215. 215.
    Hardy, R. W. F., Havelka, U. D.: Photosynthate as a major factor limiting nitrogen fixation by field-grown legumes with emphasis on soybeans. In: Symbiotic nitrogen fixation in plants (Nutman, P. S., ed.), p. 421. Cambridge Univ. Press 1975Google Scholar
  216. 216.
    Atkins, C. A., Herridge, D. F., Pate, J. S.: The economy of carbon and nitrogen in nitrogen-fixing annual legumes. In: Potential uses of isotopes in the study of biological dinitrogen fixation, p. 211. Vienna: Int. Atomic Energy Agency 1978Google Scholar
  217. 217.
    Shanmugam, K. T. et al.: Control of biological nitrogen fixation. In: Nitrogen in the environment, Vol. 2 (Nielsen, D. R., MacDonald, J. G., eds.), p. 393. New York: Academic 1978Google Scholar
  218. 218.
    Kleiner, D.: Arch. Microbiol. 120, 263 (1979)Google Scholar
  219. 219.
    Eady, R. R. et al.: J. Gen. Microbiol. 104, 277 (1978)Google Scholar
  220. 220.
    St. John, R. T., Shah, V. K., Brill, W. J.: J. Bacteriol. 119, 266 (1974)Google Scholar
  221. 221.
    Robson, R. L.: FEMS Microbiol. Lett. 5, 259 (1979)Google Scholar
  222. 222.
    Scott, D. B., Hennecke, H., Lim, S. T.: Biochim. Biophys. Acta 565, 365 (1979)Google Scholar
  223. 223.
    Hennecke, H., Shanmugam, K. T.: Arch. Microbiol. 123, 259 (1979)Google Scholar
  224. 224.
    Tsai, L. B.: Studies of a nitrogen-fixing thermophilic cyanobacterium isolated from hot springs of Hot Springs National Park, Arkansas, U.S.A. In: Fourth Internat. Symp. Nitrogen Fixation, Abstract 247, Canberra, Australia 1980Google Scholar
  225. 225.
    Stouthamer, A. H.: Symp. Soc. Gen. Microbiol. 28, 285 (1977)Google Scholar
  226. 226.
    Stouthamer, A. H., Bettenhausen, C. W.: Arch. Microbiol. 111, 21 (1976)Google Scholar
  227. 227.
    Nagai, S.: Adv. Biochem. Eng. 11, 49 (1979)Google Scholar
  228. 228.
    Yates, M. G., Jones, C. W.: Adv. Microb. Physiol. 11, 97 (1974)Google Scholar
  229. 229.
    Munson, T. O., Burris, R. H.: J. Bacteriol. 97, 1093 (1969)Google Scholar
  230. 230.
    Bottomley, P., J.: unpublishedGoogle Scholar
  231. 231.
    Ruinen, J.: Nitrogen fixation in the phyllosphere. In: The biology of nitrogen fixation (Quispel, A., ed.), p. 121. Amsterdam: North-Holland 1974Google Scholar
  232. 232.
    Döbereiner, J.: Nitrogen-fixing bacteria in the rhizosphere. Ibid., In: p. 86.Google Scholar
  233. 233.
    Jensen, H. L.: Acta Agric. Scand. 5, 278 (1955)Google Scholar
  234. 234.
    Rodina, A. K..: Mikrobiologiya 25, 145 (1956)Google Scholar
  235. 235.
    Jensen, H. L. et al.: Arch. Mikrobiol. 36, 182 (1960)Google Scholar
  236. 236.
    Döbereiner, J.: Pesquis Agropecu. Bras. 1, 357 (1966)Google Scholar
  237. 237.
    Jensen, V.: Physiol. Plant. 9, 130(1956)Google Scholar
  238. 238.
    Proctor, M. H., Wilson, P. W.: Nature (London) 182, 891 (1958)Google Scholar
  239. 239.
    Kalininskaya, T. A.: Mikrobiologiya 37, 923 (1967)Google Scholar
  240. 240.
    Hill, S.: Ecol. Bull. 26, 130 (1978)Google Scholar
  241. 241.
    Morris, I.: Nitrogen assimilation and protein synthesis. In: Algal physiology and biochemistry (Stewart, W. D. P., ed.), p. 538. Berkeley: Univ. California Press 1974Google Scholar
  242. 242.
    Pichinoty, F.: Bull. Inst. Pasteur (Paris) 71, 317 (1973)Google Scholar
  243. 243.
    Hewitt, E. J., Smith, T. A.: Plant mineral nutrition. New York: Halsted Press 1975Google Scholar
  244. 244.
    Payne, W. J.: Bacteriol. Rev, 37, 409 (1973)Google Scholar
  245. 245.
    Losada, M., Guerrero, M. G.: The photosynthetic reduction of nitrate and its regulation. In: Photosynthesis in relation to model systems (Barber, J., ed.), p. 365. Amsterdam: Elsevier 1979Google Scholar
  246. 246.
    Hewitt, E. J., Hucklesby, D. P., Notton, B. A.: Nitrate metabolism. In: Plant biochemistry (Bonner, J., Varner, J. E., eds.), p. 633. New York: Academic 1976Google Scholar
  247. 247.
    Guerrero, M. G. et al.: Arch. Microbiol. 91, 287 (1973)Google Scholar
  248. 248.
    Huffaker, R. C, Rains, D. W.: Factors influencing nitrate acquisition by plants; assimilation and fate of reduced nitrate. In: Nitrogen in the environment, Vol. 2. (Nielsen, D. R., MacDonald, J. G., eds.), p. 1. New York: Academic 1978Google Scholar
  249. 249.
    Raven, J. A.: Transport in algal cells and tissues. In: Encyclopedia of plant physiology, New series, Vol. 2, Part A (Luttge, U., Pitman, M. G., eds.), p. 129. Berlin: Springer 1976Google Scholar
  250. 250.
    Minchin, F. R., Pate, J. S.: J. Exp. Bot. 24, 259 (1973)Google Scholar
  251. 251.
    Pate, J. S., Layzell, D. B., Atkins, C. A.: Plant Physiol. 64, 1083 (1979)Google Scholar
  252. 252.
    Stouthamer, A. H.: Antonie van Leeuwenhoek 43, 351 (1977)Google Scholar
  253. 253.
    Clark, F. E.: Bacteria in soil. In: Soil biology (Burges, A., Raw, F., eds.), p. 15. London: Academic 1967Google Scholar
  254. 254.
    Welch, E. B., Sturtevant, P., Perkins, M. A.: Hydrobiologia 57, 209 (1978)Google Scholar
  255. 255.
    Rodin, L. L., Bazilevich, N. I., Rozov, N. N.: Productivity of the world's main ecosystems, In: Productivity of world ecosystems, p. 13. Washington, D. C: US Nat. Acad. Sci. 1975Google Scholar
  256. 256.
    Delwiche, C. C: Sci. Am. 223, No. 3, 136 (1970)Google Scholar
  257. 257.
    Svensson, B. H., Söderlund, R. (eds.): Nitrogen, phosphorus, and sulfur-global cycles. Stockholm: Swedish Natural Sci. Res. Council 1976Google Scholar
  258. 258.
    Stewart, W. D. P.: Phycologia 9, 261 (1970)Google Scholar
  259. 259.
    Reynaud, P. A., Roger, P. A.: Ecol. Bull. 26, 148 (1978)Google Scholar
  260. 260.
    Granhall, U., Lindberg, T.: ibid. 26, 178 (1978)Google Scholar
  261. 261.
    Todd, R. L., Meyer, R. D., Waide, J. B.: ibid. 26, 172 (1978)Google Scholar
  262. 262.
    Knowles, R.: The significance of asymbiotic dinitrogen fixation by bacteria. In: A treatise on dinitrogen fixation, Sect. IV, Agronomy and ecology (Hardy, R. W. F., Gibson, A. H., eds.), p. 33. New York: Wiley-Interscience 1977Google Scholar
  263. 263.
    Habte, M., Alexander, M.: Appl. Environ. Microbiol. 39, 342 (1980)Google Scholar
  264. 264.
    Hollaender, A. (ed.): Genetic engineering for nitrogen fixation. New York: Plenum Press 1977Google Scholar
  265. 265.
    Postgate, J. R.: Phil. Trans. R. Soc. London, Ser. B 281, 249 (1977)Google Scholar
  266. 266.
    Döbereiner, J., Burris, R. H., Hollaender, A., Franco, A. A., Neyra, C. A., Scott, D. B. (eds.): Limitations and potentials for biological nitrogen fixation in the tropics. New York: Plenum Press 1978Google Scholar
  267. 267.
    Hardy, R. W. F.: Increasing crop productivity: agronomic and economic considerations on the role of biological nitrogen fixation. In: Rep. public meeting on genetic engineering for nitrogen fixation (Hollaender, A., ed.), p. 77. Washington, D. C: U.S. Govt. Printing Ofc. 1977Google Scholar
  268. 268.
    Huber, D. M. et al.: BioScience 27, 523 (1977)Google Scholar
  269. 269.
    Harrison, D. E. F.: Adv. Appl. Microbiol. 24, 129 (1978)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Vincent P. Gutschick
    • 1
  1. 1.Environmental Science Group LS-6 Los Alamos Scientific LaboratoryLos AlamosU.S.A.

Personalised recommendations