Advertisement

Application of simple structured models in bioengineering

  • A. Harder
  • J. A. Roels
Conference paper
Part of the Advances in Biochemical Engineering book series (ABE, volume 21)

Abstract

Mathematical models are an important tool to any engineering discipline. The mathematical treatment of the processes encountered in bioengineering is complicated by special problems caused by the complexity of living systems and the segregated nature of microbial life. It is especially this last mentioned feature which can result in errors if the continuum approach commonly used in engineering is adopted.

The present paper reviews and updates the theory of the construction of structured continuum models, which become significant in applications where the common unstructured approach, e.g. Monod's model, fails. This particularly applies to transient situations in batch, fed batch or continuous culture.

Emphasize is placed on the need for structured models, which are as simple as possible. A guide to judging the necessary degree of complexity is provided using the time constant concept, which is based on judging the time scales on which the various regulatory mechanisms are operative.

The significance of structured models to the description of primary metabolism is described with special reference to growth energetics.

As a second important range of applications, the dynamics of extracellular and intracellular enzyme synthesis, is discussed, both from the viewpoint of product formation and diauxy in growth on mixed substrates.

The need for experimental verification and the potentialities of continuous culture, especially in transient situations, in that respect are indicated to be the main subjects in which research effort needs to be invested.

Keywords

Specific Growth Rate Dilution Rate Continuous Culture Catabolite Repression Continuum Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10 References

  1. 1.
    Popper, K. R.: Conjectures and refutations. New York: Routledge and Kegan Pan 1965Google Scholar
  2. 2.
    Kossen, N. W. F.: Symp. Soc. Gen. Microbiol. 29, 327 (1979)Google Scholar
  3. 3.
    Roels, J. A., Kossen, N. W. F.: In: Progr. Ind. Microbiol. Bull, M. J. (ed.), vol. 14, p. 95, Amsterdam, Oxford, New York: Elsevier 1978Google Scholar
  4. 4.
    Fredrickson, A. G., Megee, R. D., Tsuchiya, H. M.: Adv. Appl. Microbioi. 13, 419 (1970)Google Scholar
  5. 5.
    Himmelblau, D. M., Bischoff, K. B.: Process analysis and simulation: deterministic systems, p. 10. New York, London, Sidney: John Wiley and Sons 1968Google Scholar
  6. 6.
    Ramkrishna, D.: Adv. Biochem. Eng. 11, 1 (1979)Google Scholar
  7. 7.
    Fredrickson, A. G., Ramkrishna, D., Tsuchiya, H. M.: Math. Biosci. 1, 327 (1967)Google Scholar
  8. 8.
    Fredrickson, A. G.: Biotech. Bioeng. 8, 167 (1966)Google Scholar
  9. 9.
    Monod, J.: Recherches sur la croissance des cultures bacteriénnes. Paris: Hermann et Cie. 1958Google Scholar
  10. 10.
    Herbert, D.: In: Recent Progress in microbiology. Tunevall, G. (ed.), p. 381. Stockholm: Almquist and Wiksell 1959Google Scholar
  11. 11.
    Yamané, T., Hirano, S.: J. Ferment. Technol. 55, 156 (1977)Google Scholar
  12. 12.
    Maaloee, O., Kjeldgaard, N. O.: Control of macromolecular synthesis. New York: Benjamin Inc. 1966Google Scholar
  13. 13.
    Koch, A. L.: J. Theor. Biol. 28, 203 (1970)Google Scholar
  14. 14.
    Garfinkel, D.: In: Concepts and models of biomathematics. Heinmets, F. (ed.), vol. 1, p. 1. New York: Marcel Dekker 1969Google Scholar
  15. 15.
    Heinmets, F.: Analysis of normal and abnormal cell growth. New York: Plenum Press 1966Google Scholar
  16. 16.
    Fredrickson, A. G.: Biotech. Bioeng. 18, 1481 (1976)Google Scholar
  17. 17.
    Dabes, J. N., Finn, R. K., Wilke, C. R.: Biotech. Bioeng. 15, 1159 (1973)Google Scholar
  18. 18.
    Boiteux, A., Hess, B.: In: Biological and biochemical oscillators. Chance, B., Pye, E. K., Ghosh, A. K., Hess, B. (eds.), p. 243. New York: Academic Press 1973Google Scholar
  19. 19.
    Umbarger, H. E.: Science 123, 848 (1956)Google Scholar
  20. 20.
    Yates, R. A., Pardee, A. B.: J. Biol. Chem. 221, 757 (1956)PubMedGoogle Scholar
  21. 21.
    Monod, J., Wyman, J., Changeux, J. P.: J. Mol. Biol. 12, 88 (1965)PubMedGoogle Scholar
  22. 22.
    Koshland, Jr., D. E., Neméthy, G., Filmer, D., Biochemistry 5, 365 (1966)PubMedGoogle Scholar
  23. 23.
    Savageau, M. A.: Biochemical systems analysis. London, Amsterdam, Don Millis, Sidney, Tokyo: Addison-Wesley Publ. Co. 1976Google Scholar
  24. 24.
    Dalton, H., Postgate, J. R.: J. Gen. Microbiol. 56, 307 (1969)Google Scholar
  25. 25.
    Tempest, D. W., Hunter, J. R.: J. Gen. Microbiol. 41, 267 (1965)Google Scholar
  26. 26.
    Herbert, D.: Symp. Soc. Gen. Microbiol. 11, 391 (1961)Google Scholar
  27. 27.
    Brown, C. M., Rose, A. H.: J. Bacteriol. 97, 261 (1969)Google Scholar
  28. 28.
    Forchhammer, J., Lindahl, L.: J. Mol. Biol. 55, 563 (1971)PubMedGoogle Scholar
  29. 29.
    Alton, T. H., Koch, A. L.: J. Mol. Biol. 86, 1 (1974)PubMedGoogle Scholar
  30. 30.
    Jacob, F., Monod, J.: J. Mol. Biol. 3, 318 (1961)PubMedGoogle Scholar
  31. 31.
    Pastan, I., Perlman, R. L.: Science 169, 339 (1970)PubMedGoogle Scholar
  32. 32.
    Sikyta, B., Fencl, Z.: In: Continuous culture. Applications and new fields. Dean, A. C. R., Ellwood, D. C, Evans, C. G. T., Melling, J. (eds.), vol. 6, p. 158. Chichester: Ellis Horwood 1976Google Scholar
  33. 33.
    Harder, A.: Structured model of bacterial growth and tests with activated sludge in a one-stage and two-stage chemostat. Ph. D. Thesis Wageningen 1979. Chapter 6. Wageningen: Pudoc 1979Google Scholar
  34. 34.
    Roels, J. A.:In: Biotechnology, Proceedings First European Congress on Biotechnology, vol. 3. Dechema Monographien 82, p. 221. Weinheim, New York: Verlag Chemie 1978Google Scholar
  35. 35.
    Himmelblau, D. M., Bischoff, K. B.: Process analysis and simulation: deterministic systems, chapter 4 and 6. New York, London, Sidney: John Wiley and Sons 1968Google Scholar
  36. 36.
    Himmelblau, D. M.: Process analysis by statistical methods, p. 18. New York, Sidney, London, Toronto: John Wiley and Sons 1970Google Scholar
  37. 37.
    Michaelis, L., Menten, M. L.: Biochem. Z. 49, 333 (1913)Google Scholar
  38. 38.
    Smith, J. M.: Chemical engineering kinetics, chapter 3. New York, Toronto, London: McGraw-Hill Book Co. 1956Google Scholar
  39. 39.
    Williams, F. M.: J. Theor. Biol. 15, 190 (1967)Google Scholar
  40. 40.
    Ramkrishna, D., Fredrickson, A. G., Tsuchiya, H. M.: Biotech. Bioeng. 9, 129 (1967)Google Scholar
  41. 41.
    Brown, D. E., Fitzpatrick, S. W.: Biotech. Lett. 1, 3 (1979)Google Scholar
  42. 42.
    Aranyi, P., Toth, J.: Acta Biochim. Biophys. Acad. Sci. Hung. 12, 375 (1977)Google Scholar
  43. 43.
    Berg, O. G., Blomberg, C: J. Theor. Biol. 67, 523 (1977)Google Scholar
  44. 44.
    Harder, A.: Structured model of bacterial growth and tests with activated sludge in a one-stage and two-stage chemostat, Ph. D. Thesis Wageningen 1979. Wageningen: Pudoc 1979Google Scholar
  45. 45.
    Aris, R.: Introduction to the analysis of chemical reactors. Englewood Cliffs: Prentice Hall 1965Google Scholar
  46. 46.
    Prigogine, I., Defay, R.: Chemical thermodynamics. London: Longmans Green 1954Google Scholar
  47. 47.
    Meixner, J.: Z. Naturforsch. 4A, 594 (1949)Google Scholar
  48. 48.
    Himmelblau, D. M., Bischoff, K. B.: Process analysis and simulation: Deterministic systems, chapter 5. New York, London, Sidney: John Wiley and Sons 1968Google Scholar
  49. 49.
    Young, T. B., Bruley, D. F., Bungay, H. R.: Biotech. Bioeng. 12, 747 (1970)Google Scholar
  50. 50.
    Dang, N. D. P., Dunn, I. J., Mor, J. R.: J. Ferment. Technol. 53, 885 (1975)Google Scholar
  51. 51.
    Dang, N. D. P.: J. Ferment. Technol. 54, 396 (1976)Google Scholar
  52. 52.
    Leduy, A., Kosaric, N., Zajic, J. E.: Biotech. Bioeng. 19, 1653 (1977)Google Scholar
  53. 53.
    Briggs, G. E., Haldane, J. B. S.: Biochem. J. 19, 338 (1925)Google Scholar
  54. 54.
    Heineken, F. G., Tsuchiya, H. M., Aris, R.: Math. Biosci. 1, 95 (1967)Google Scholar
  55. 55.
    Roels, J. A.: Biotech. Bioeng. 22, 33 (1980)Google Scholar
  56. 56.
    Geurts, Th. E., de Kok, H. E., Roels, J. A.: Biotech. Bioeng. 22, 2031 (1980)Google Scholar
  57. 57.
    Veldkamp, H.: In: Methods in microbiology. Norris, J. R., Ribbons, W. D. (eds.), vol. 3A, p. 305. London, New York: Academic Press 1970Google Scholar
  58. 58.
    Bull, A. T., Ellwood, D. C, Ratledge, C: Soc. Gen. Microbiol. Symp. Ser. 29, 1 (1979)Google Scholar
  59. 59.
    Young, T. B., Bungay, H. R.: Biotech. Bioeng. 15, 377 (1973)Google Scholar
  60. 60.
    Chi, C. T., Howell, J. A.: Biotech. Bioeng. 18, 63 (1976)Google Scholar
  61. 61.
    Pirt, S. J.: Principles of microbe and cell cultivation, chapter 16. Oxford, London, Edinburgh, Melbourne: Blackwell Sci. Publ. 1975Google Scholar
  62. 62.
    Roels, J. A.: Biotech. Bioeng. 22, 2457 (1980)Google Scholar
  63. 63.
    Luedeking, R., Piret, E. L.: J. Biochem. Microbiol. Technol. Eng. 1, 393 (1959)Google Scholar
  64. 64.
    Fencl, Z., Novak, M.: Folia Microbiol. 14, 314 (1969)Google Scholar
  65. 65.
    Fencl, Z., et al.: In: Microbial physiology and continuous culture. Proc. Third International Symposium, Salisbury, Wiltshire 1966. Powell, E. O. et al. (eds.), p. 186. London: Her Majesty's stationary office 1967Google Scholar
  66. 66.
    Ricica, J.: In: Fermentation advances. Proc. Third Ferment. Symp. New Brunswick, 1968. Perlman, D. (ed.), p. 427. New York, London: Academic Press 1969Google Scholar
  67. 67.
    Fencl, Z., Machek, F., Novak, M.: In: Fermentation advances. Proc. Third Ferment. Symp. New Brunswick, 1968. Perlman, D. (ed.), p. 301. New York, London: Academic Press 1969Google Scholar
  68. 68.
    Malek, I.: In Continuous culture. Applications and new fields. Dean, A. C. R., et al. (eds.), vol. 6, p. 31. Chichester: Ellis Horwood 1976Google Scholar
  69. 69.
    Powell, E. O.: In: Continuous culture of microorganisms: Proc. 4th Symp., Prague, 1968. Malek, I., et al. (eds.), p. 275. New York: Academic Press 1969Google Scholar
  70. 70.
    Pirt, S. J., Proc. Soc. [Biol.] 163, 224 (1965)Google Scholar
  71. 71.
    Sneddon, I. N.: Encyclopaedic dictionary of mathematics for engineers and applied scientists, p. 665. Oxford, New York, Toronto, Sidney, Paris, Frankfurt: Pergamon Press 1976Google Scholar
  72. 72.
    Williams, F. M.: In: System analysis and simulation in ecology. Patten, B. V. (ed.), vol. 1, p. 197. New York: Academic Press 1975Google Scholar
  73. 73.
    Verhoff, F. H., Sundaresan, K. R., Tenney, M. W.: Biotech. Bioeng. 14, 411 (1972)Google Scholar
  74. 74.
    Bijkerk, A. H. E., Hall, R. J.: Biotech. Bioeng. 19, 267 (1977)Google Scholar
  75. 75.
    Pamment, N. B., Hall, R. J., Barford, J. P.: Biotech. Bioeng. 20, 349 (1978)Google Scholar
  76. 76.
    Ierusalimsky, N. D.: In: Microbial physiology and continuous culture. Proc. Third International Symposium, Salisbury, Wiltshire. Powell, E. O., et al. (eds.), p. 23. London: Her majesty's stationary office 1967Google Scholar
  77. 77.
    Powell, E. O.: In: Microbial physiology and continuous culture. Proc. Third International Symposium, Salisbury, Wiltshire. Powell, E. O., et al. (eds.), p. 34. London: Her Majesty's stationary office 1967Google Scholar
  78. 78.
    Aiba, S., Nagatani, M., Furuse, H.: J. Ferment. Technol. 45, 475 (1967)Google Scholar
  79. 79.
    Aiba, S., et al.: A. I. Ch. E. 15, 624 (1969)Google Scholar
  80. 80.
    Chase, L. M.: Biotech. Bioeng. 19, 1431 (1977)Google Scholar
  81. 81.
    Miura, Y., et al.: J. Ferment. Technol. 52, 100 (1974)Google Scholar
  82. 82.
    Dennis, P. P., Bremer, H.: J. Mol. Biol. 75, 145 (1973)Google Scholar
  83. 83.
    Dennis, P. P., Bremer, H.: Anal. Biochem. 56, 489 (1973)Google Scholar
  84. 84.
    Bremer, H., Berry, L., Dennis, P. P.: J. Mol. Biol. 89, 233 (1974)Google Scholar
  85. 85.
    Sterkin, V. E., Chirkov, I. M., Samoylenko, V. A.: Biotech. Bioeng. Symp. Ser. 4, 53 (1973)Google Scholar
  86. 86.
    Pickett, A. M., Bazin, M. J.: Biotech. Bioeng. 21, 1043 (1979)Google Scholar
  87. 87.
    Sundstrom, D. W., Klei, H. E., Brookman, G. T.: Biotech. Bioeng. 18, 1 (1976)Google Scholar
  88. 88.
    Borzani, W., Gregori, R. E., Vairo, M. L. R.: Biotech. Bioeng. 19, 1363 (1977)Google Scholar
  89. 89.
    Dawes, E. A., Senior, P. J.: Adv. Microbial Physiol. 10, 135 (1973)Google Scholar
  90. 90.
    Stouthamer, A. H.: Microbial Biochem. 21, 135 (1979)Google Scholar
  91. 91.
    Stouthamer, A. H.: Symp. Soc. Gen. Microbiol. 27, 285 (1977)Google Scholar
  92. 92.
    Bauchop, T., Elsden, S. R.: J. Gen. Microbiol. 23, 457 (1960)PubMedGoogle Scholar
  93. 93.
    Southamer, A. H., Bettenhausen, C. W.: Biochem. Biophys. Acta 301, 53 (1973)Google Scholar
  94. 94.
    Forrest, W. W., Walker, D. J.: Adv. Microbial Physiol. 5, 213 (1971)Google Scholar
  95. 95.
    Stouthamer, A. H.: Antonie van Leeuwenhoek 39, 545 (1973)PubMedGoogle Scholar
  96. 96.
    Mandelstam, J.: Biochem. J. 69, 110 (1958)Google Scholar
  97. 97.
    Miller, H. H., Sullivan, P. A., Shepherd, M. G.: Biochem. J. 144, 209 (1974)Google Scholar
  98. 98.
    Pipijn, P., Verstraete, W.: Biotech. Bioeng. 20, 1883 (1978)Google Scholar
  99. 99.
    Jones, G. L.: Water Res. 7, 1475 (1973)Google Scholar
  100. 100.
    Grou, P., Dohanyos, M., Chudoba, J.: Water Res. 9, 637 (1975)Google Scholar
  101. 101.
    Benefield, L. D., Randall, C. W.: J. Water Poll. Contr. Fed. 49, 1636 (1977)Google Scholar
  102. 102.
    Monod, J., Cohn, M.: Adv. Enzymol. 13, 67 (1952)Google Scholar
  103. 103.
    Cohen, G. N., Monod, J.: Bacteriol. Rev. 21, 169 (1957)PubMedGoogle Scholar
  104. 104.
    Jacob, F., Monod, J.: J. Mol. Biol. 3, 318 (1961)PubMedGoogle Scholar
  105. 105.
    Yanofsky, C: J. Am. Med. Assn. 218, 1026 (1971)Google Scholar
  106. 106.
    Magasanik, B.: In: The operon. Miller, J. H., Reznikoff, W. S. (eds.), p. 373. Cold Spring Harbor Laboratory 1978Google Scholar
  107. 107.
    Englesberg, E., Wilcox, G.: Ann. Rev. Genet. 8, 219 (1974)Google Scholar
  108. 108.
    Gilbert, W., Müller-Hill, B.: Proc. Nat. Acad. Sci. 56, 1891 (1966)Google Scholar
  109. 109.
    Gilbert, W., Müller-Hill, B.: Proc. Nat. Acad. Sci. 58, 2415 (1967)Google Scholar
  110. 110.
    Yagil, G., Yagil, E.: Biophys. J. 11, 11 (1971)Google Scholar
  111. 111.
    Van Dedem, G., Moo-Young, M.: Biotech. Bioeng. 15, 419 (1973)Google Scholar
  112. 112.
    Toda, K.: Biotech. Bioeng. 18, 1117 (1976)Google Scholar
  113. 113.
    Imanaka, T., Aiba, S.: Biotech. Bioeng. 19, 757 (1977)Google Scholar
  114. 114.
    Bajpai, R. K., Ghose, T. K.: Biotech. Bioeng. 20, 927 (1978)Google Scholar
  115. 115.
    Barkley, M. D., Bourgeois, S.: In: The operon. Miller, J. H., Reznikoff, W. S. (eds.), p. 187. Cold Spring Harbor Laboratory 1978Google Scholar
  116. 116.
    Hill, T. L.: Thermodynamics of small systems. New York: W. A. Benjamin, Inc. 1963Google Scholar
  117. 117.
    Yagil, G.: In: Current topics in cellular regulation. Horecker, B. L., Stadtman, E. R. (eds.), vol. 9, p. 220. New York: Academic Press 1975Google Scholar
  118. 118.
    Koch, A. L.: J. Theor. Biol. 16, 166 (1967)Google Scholar
  119. 119.
    Van Dedem, G., Moo-Young, M.: Biotech. Bioeng. 17, 1301 (1975)Google Scholar
  120. 120.
    Weber, G.: In: Molecular Biophysics. Pullman, B., Weissbluth, W. (eds.). New York: Academic Press (1965)Google Scholar
  121. 121.
    Toda, K., Takeuchi, T., Sano, H.: J. Chem. Technol. Biotech. 29,747 (1979)Google Scholar
  122. 122.
    Monod, J.: Growth 11, 223 (1947)Google Scholar
  123. 123.
    Magasanik, B.: Cold Spring Harbor Symp. Quant. Biol. 26, 249 (1961)PubMedGoogle Scholar
  124. 124.
    Kinoshita, S., Okada, H., Terui, G.: J. Ferment. Technol. 45, 504 (1967)Google Scholar
  125. 125.
    Kinoshita, S., Okada, H., Terui, G.: J. Ferment. Technol. 46, 427 (1968)Google Scholar
  126. 126.
    Okazaki, M., Terui, G.: J. Ferment. Technol. 45, 1147 (1967)Google Scholar
  127. 127.
    Okazaki, M., Miura, Y., Terui, G.: J. Ferment. Technol. 56, 279 (1978)Google Scholar
  128. 128.
    Tahara, T., Doi, S., Shinmyo, A.: J. Ferment. Technol. 50, 655 (1972)Google Scholar
  129. 129.
    Shinmyo, A., Okazaki, M., Terui, G.: J. Ferment. Technol. 46, 1000 (1968)Google Scholar
  130. 130.
    Al Obaidii, Z. S., Berry, D. R.: Biotech. Lett. 2, 5 (1980)Google Scholar
  131. 131.
    Hu, W. S., Demain, A. L.: Proc. Biochem. 14 (9), 2 (1979)Google Scholar
  132. 132.
    Makman, R. S., Sutherland, E. Q.: J. Biol. Chem. 240, 1309 (1979)Google Scholar
  133. 133.
    Perlman, R. L., Pastan, I.: Biochem. Biophys. Res. Commun. 30, 656 (1968)Google Scholar
  134. 134.
    De Crombrugghe, B., et al.: J. Biol. Chem. 244, 5828 (1969)Google Scholar
  135. 135.
    Epstein, W., Rothman-Denes, L. B., Hesse, J.: Proc. Nat. Acad. Sci. 72, 2300 (1975)Google Scholar
  136. 136.
    Zubay, G., Schwartz, D., Beckwith, J.: Proc. Nat. Acad. Sci. 66, 104 (1970)Google Scholar
  137. 137.
    Emmer, M., et al.: Proc. Nat. Acad. Sci. 66, 480 (1970)Google Scholar
  138. 138.
    De Crombrugghe, B., et al.: Nat. New Biol. 231, 139 (1971)Google Scholar
  139. 139.
    Eron, L., Block, R.: Proc. Nat. Acad. Sci. 68, 1828 (1971)Google Scholar
  140. 140.
    Dessein, A., Schwartz, M., Ullman, A.: Mol. Gen. Genet. 162, 83 (1978)Google Scholar
  141. 141.
    Dessein, A., Tillier, F., Ullman, A.: Mol. Gen. Genet. 162, 89 (1978)Google Scholar
  142. 142.
    Gondo, S., et al.: Biotech. Bioeng. 20, 1797 (1978)Google Scholar
  143. 143.
    Anderson, W. B., Perlman, R. L., Pastan, I.: J. Biol. Chem. 247, 2717 (1972)Google Scholar
  144. 144.
    Krakow, J. S., Pastan, I.: Proc. Nat. Acad. Sci. 70, 2529 (1973)Google Scholar
  145. 145.
    Wu, C, Wu, F. Y. H.: Biochemistry 13, 2573 (1974)PubMedGoogle Scholar
  146. 146.
    Wu, F. Y. H., Nath, K., Wu, C: Biochemistry 13, 2567 (1974)Google Scholar
  147. 147.
    De Crombrugghe, B., Pastan, I.: In: The operon. Miller, J. H., Reznikoff, W. S. (eds.), p. 303. Cold Spring Harbor Laboratory 1978Google Scholar
  148. 148.
    Chamberlin, M. J.: Ann. Rev. Biochem. 43, 721 (1974)Google Scholar
  149. 149.
    Reznikoff, W. S., Abelson, J. N.: In: The operon. Miller, J. H., Reznikoff, W. S. (eds.), p. 221. Cold Spring Harbor Laboratory 1978Google Scholar
  150. 150.
    Dellweg, H., Schlanderer, G., Megnet, R.: In: Proceedings european brewery convention, Salzburg, p. 241. Amsterdam: Elsevier 1973Google Scholar
  151. 151.
    Schlanderer, G., Dellweg, H.: Eur. J. Biochem. 49, 305 (1974)Google Scholar
  152. 152.
    Buettner, M. J., Spitz, E., Rickenberg, H. V.: J. Bacteriol. 114, 1068 (1973)Google Scholar
  153. 153.
    Peterkofsky, A., Gazdar, C: Proc. Nat. Acad. Sci. 71, 2324 (1974)Google Scholar
  154. 154.
    Terui, G., Okazaki, M., Kinoshita, S.: J. Ferment. Technol. 45, 497 (1967)Google Scholar
  155. 155.
    Terui, G.: Pure Appl. Chem. 36, 377 (1973)Google Scholar
  156. 156.
    Pollock, M. R.: Biochim. Biophys. Acta 76, 80 (1963)Google Scholar
  157. 157.
    Koch, A. L.: Adv. Microbial Physiol. 6, 147 (1971)Google Scholar
  158. 158.
    Baker, R., Yanofsky, C: J. Mol. Biol. 69, 89 (1972)Google Scholar
  159. 159.
    Adesnik, M., Levinthal, C: Cold Spring Harbor Symp. Quant. Biol. 35, 451 (1970)Google Scholar
  160. 160.
    Kepes, A.: Biochim. Biophys. Acta 76, 293 (1963)Google Scholar
  161. 161.
    Koch, A. L., Deppe, C. S.: J. Mol. Biol. 55, 549 (1971)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • A. Harder
    • 1
  • J. A. Roels
    • 2
  1. 1.Gist-Brocades Research and DevelopmentDelftNetherlands
  2. 2.Vakgroep Algemene en Technische BiologieDelftNetherlands

Personalised recommendations