Advertisement

Bioenergy pp 43-92 | Cite as

Alcohol production and recovery

  • B. Maiorella
  • Ch. R. Wilke
  • H. W. Blanch
Conference paper
Part of the Advances in Biochemical Engineering book series (ABE, volume 20)

Abstract

Alcohol production is receiving increasing attention as a potential transportation fuel. The main feedstocks for the fermentative production of ethanol by yeast are sugar, starch and cellulosic feedstocks. Conventional ethanol production technology by fermentation is reviewed, and the conventional distillation of ethanol from the broth is described. New advances in feedstock preparations including starch and cellulosic raw materials are reviewed and their impact on their fermentation is assessed. Continuous fermentation and continuous fermentation with cell recycle provide opportunities for more efficient alcohol production. Alternatives to energy intensive conventional distillation of alcohol include two-pressure distillation and various novel techniques such as dehydration and solvent extraction. A review of alcohol production economics is included.

Keywords

Ethanol Production Alcohol Production Extractive Distillation Azeotropic Distillation Extractive Fermentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9 References

  1. 1.
    Chem. Eng. News 51, No. 10, 7 (1973)Google Scholar
  2. 2.
    Hough, J. S. et al.: Continuous Culture in Brewing. Chapter 17, 1900Google Scholar
  3. 3.
    Jacobs, P. B.: Industrial Alcohol, U.S.D.A., Misc. Publication 695, Feb. 1950Google Scholar
  4. 4.
    Rose, D.: Yeast for Molasses Alcohol, Process Biochemistry 11, (3), 10 (1976)Google Scholar
  5. 5.
    Cysewski, G. R., Wilke, C. R.: Biotech. Bioeng., 20, 1421 (1978)CrossRefGoogle Scholar
  6. 6.
    Maiorella, B., Blanch, H. W., Wilke, C. R.: Rapid Ethanol Prod, via Fermentation. Univ. Calif., Lawrence Berkeley Lab. Rept. 10219, Nov. (1979). Presented at the AIChE 72nd National meeting, San Francisco, CA., Nov. 29, 1979Google Scholar
  7. 7.
    Katzen, R., Associates: Grain Motor Fuel Alcohol. Technical and Economic Assessment Study. U.S. Dept. of Energy Contract EJ-78-C-01-6639, June 1979Google Scholar
  8. 8.
    Hudson, J. R.: Recent Changes in Brewing Technology, Fermentation Technology Today: Proceedings of the IVth International Fermentation Symposium, p. 6290632 (1972)Google Scholar
  9. 9.
    Yand, V., Trindade, S.: Brazil's Gasohol Program. Chem. Eng. Prog., p. 11, April 1979Google Scholar
  10. 10.
    Avies, R. S.: Industrial alcohol. Kirk Othmer Encyclopedia of Chemical Technology, Kirk, R., Othmer, D. (eds.), p. 252, 1947Google Scholar
  11. 11.
    Brenner, W. et al.: Utilization of Waste Cellulose for Production of Chemical Feedstocks via Acid Hydrolysis. Clean Fuels Biomass Wastes, Symp. Paper p. 201 (1977)Google Scholar
  12. 12.
    Harris, E. et al.: Fermentation of Douglas Fir Hydrolyzate by S. cerevisiae, Ind. And Eng. Chem. 38, No. 9, p. 896, Sept. 1946CrossRefGoogle Scholar
  13. 13.
    Ghose, T. K., Ghose, P.: J. Appl. Chem. Biotechnol. 28, 309 (1978)Google Scholar
  14. 14.
    Wilke, C. R. et al.: Raw Materials Evaluation and Process Development Studies for Conversion of Biomass to Sugars and Ethanol. Proceedings, Second Anual Symp. on Fuels from Biomass, Dept. of Energy meeting, Troy, N.Y., Vol. 1, June 1978Google Scholar
  15. 15.
    Wilke, C. R. et al.: Enzymatic Hydrolysis of Cellulose, Theory and Applications, Rept. to the Office of Economic Cooperation and Development, 1980Google Scholar
  16. 16.
    Wang, D., Cooney, C.: Degradation of Cellulosic Biomass and Its Subsequent Utilization for the Production of Chemical Feedstocks. Ann. Rept. to Solar Energy Research Institute, Contract No. EG-77-S-02-4198 (1980)Google Scholar
  17. 17.
    Montencourt, B.: Rutgers University, Personal CommunicationGoogle Scholar
  18. 18.
    Pirt, S. J., Kurowski, W.: J. Gen. Microbiol. 63, 357 (1970)PubMedGoogle Scholar
  19. 19.
    Holzer, H.: Aspects of Yeast Metabolism. Mills, A. K. (ed.), Oxford Blackwells Scientific Publications 1968Google Scholar
  20. 20.
    Akbar, M. D. et al.: Biotech. Bioeng. 16, 455 (1974)CrossRefGoogle Scholar
  21. 21.
    Moss, F. J. et al.: Biotech. Bioeng. 13, 63 (1971)CrossRefGoogle Scholar
  22. 22.
    Richard, P. D. et al.: Biotech. Bioeng. 13, 164 (1971)Google Scholar
  23. 23.
    Rogers, P. J., Steward, P. R.: J. Gen. Microbiol. 79, 205 (1973)PubMedGoogle Scholar
  24. 24.
    Haukeli, A. D., Lie, S.: J. Inst. Brew. 79, 55 (1973)Google Scholar
  25. 25.
    David, M. H., Kirsop, B. H.: J. Inst. Brew. 79, 20 (1973)Google Scholar
  26. 26.
    Bloomfield, D. K., Black, K. J.: Bio. Chem. 235, 337 (1960)Google Scholar
  27. 27.
    Cysewski, G. R.: Fermentation Kinetics and Process Economics for the Production of Ethanol. Ph. D. Thesis, Univ. Calif., Dept. of Chem. Eng., Berkeley, LBL-4480, March 1976Google Scholar
  28. 28.
    White, J., Munns, D. J.: Vallestein Commun., 14, 199 (1951)Google Scholar
  29. 29.
    Cowland, T. W., Maule, D. R.: J. Inst. Brew. 72, 489 (1966)Google Scholar
  30. 30.
    Andreasen, A. A., Stier, J. J. B.: J. Cell. Comp. Phys. 41, 23 (1953)CrossRefGoogle Scholar
  31. 31.
    Aigar, A. S., Ludeking, R.: Chem. Eng. Progr. Symp. 62 (69), 57 (1969)Google Scholar
  32. 32.
    Bazua, C.: Effect of Alcohol Concentration on Kinetics of Ethanol Production by Saccharomyces cerevisiae. M.S. Thesis, Univ. of Calif., Dept. of Chem. Eng., Berkeley 1975Google Scholar
  33. 33.
    Ghose, T, K., Tyagi, R. D.: Biotech. Bioeng. 21, 1401 (1979)CrossRefGoogle Scholar
  34. 34.
    Aiba, S. et al.: Biotech. Bioeng. 10, 845 (1968)CrossRefGoogle Scholar
  35. 35.
    Holzberg, I. et al.: Biotech. Bioeng. 9, 413 (1967)CrossRefGoogle Scholar
  36. 36.
    Pirt, S. J.: Principles of Microbe and Cell Cultivation. p. 126, Holstead Press, Div. John Wiley & Sons, New York 1975Google Scholar
  37. 37.
    Suomalainen, H., Oura, E.: Yeast Nutrition and Solute Uptake. In: The Yeasts, Vol. 2, Chapter 2, Rose, A. H., Harrison, J. J. (eds.), Academic Press, New York 1971Google Scholar
  38. 38.
    Eddy, A. A.: Aspects of the Chemical Composition of Yeast. In: The Chemistry and Biology of Yeasts, Chapter 5, Cook, A. H. (ed.), Academic Press, New York 1958Google Scholar
  39. 39.
    Oura, E.: Biotech. Bioeng., 16, 1197 (1974)CrossRefGoogle Scholar
  40. 40.
    Harrison, J. S.: Yeast Production. In: Progress in Industrial Microbiology, Vol. 10, p. 129, Hockenhull, D. J. D. (ed.), 1971Google Scholar
  41. 41.
    Cysewski, G. R., Wilke, C. R.: Biotech. Bioeng. 19, 1125 (1977)CrossRefGoogle Scholar
  42. 42.
    Delrosario, E. et al.: Biotech. Bioeng. 21, 1477 (1979)CrossRefGoogle Scholar
  43. 43.
    Reuss, M. et al.: Europ. J. Appl. Microbiol. Biotechnol., 8, 167 (1979)CrossRefGoogle Scholar
  44. 44.
    Webster, I. A., Shuler, M. L.: Biotech. Bioeng. 21, 1725 (1979)CrossRefGoogle Scholar
  45. 45.
    Nagodawithana, T. W. et al.: Appl. Microbiol. 28, 383 (1974)PubMedGoogle Scholar
  46. 46.
    Nagodawithana, T. W., Steinkraus, K. H.: Appl. Environ. Microbiol. 31, 158 (1976)PubMedGoogle Scholar
  47. 47.
    Hough, J. S.: Production of Beer by Continuous Fermentation. Brewing Industry Research Foundation, Nutfield, Surrey, England 1959Google Scholar
  48. 48.
    Yarovenko, V. L.: Theory and Practice of Continuous Cultivation of Microorganisms in Industrial Alcoholic Processes. In: Adv. Biochem. Eng., Vol. 9, p. 1. Ghose, T. K., Fiechter, A., Blakebrough, N. (eds.), Springer Berlin 1978Google Scholar
  49. 49.
    Dawson, P. S. S.: Continuous Fermentations, Chapter 4, Ann. Reports on Fermentation Processes, Vol. 1, Perlman, D. (ed.), Academic Press, New York 1977Google Scholar
  50. 50.
    Levenspiel, O.: Chemical Reaction Engineering, John Wiley & Sons, New York 1977Google Scholar
  51. 51.
    Bishop, L.: J. Inst. Brew 76, 172 (1970)Google Scholar
  52. 52.
    Falch, E., Gaden, E.: A Continuous, Multistage Tower Fermentor. I. Design and Performances Tests. Biotech. Bioeng., 11 927 (1969)CrossRefGoogle Scholar
  53. 53.
    Ktai, A. et al.: Continuous Culture Using a Perforated Plate Column. Fermentation Technology Today, Terni, G. (ed.) (1972)Google Scholar
  54. 54.
    Kitai, A., Yamagata, Y.: Perforated Plate Column Fermentor. Process Biochem., Nov. 1970Google Scholar
  55. 55.
    Paca, J., Gregr, V.: Biotech. Bioeng., 19, 539 (1977)CrossRefGoogle Scholar
  56. 56.
    Prokop, A. et al.: Biotech. Bioeng. 11, 945 (1969)CrossRefGoogle Scholar
  57. 57.
    Fong, W. et al.: The Cost of Producing Fermentation Ethanol from Biomass. SRI International, presented at AIChE 72nd Meeting, San Francisco, CA, November 29, 1979Google Scholar
  58. 58.
    Sortland, L. D.: The Kinetics of Dense Culture Fermentations, Ph. D. Thesis, Univ. Calif., Dept. of Chem. Eng., Berkeley, May 1968Google Scholar
  59. 59.
    Elias, S.: Gasohol, New Role for Food Industry, p. 61. Food Engineering, Oct. 1979Google Scholar
  60. 60.
    Portno, A. D.: J. Inst. Brew. 73, 43 (1967)Google Scholar
  61. 61.
    Cysewski, G. R.: Fermentation Kinetics and Process Economics for the Production of Ethanol, Ph. D. Thesis, Univ. Calif., Dept. of Chem. Eng., Berkeley, LBL-4480, March 1976Google Scholar
  62. 62.
    Ghose, T., Tyagi, R. D.: Biotech. Bioeng., 21, 1387 (1979)CrossRefGoogle Scholar
  63. 63.
    Wash, T., Bungay, H.: Biotech. Bioeng. 21, 1081 (1979)CrossRefGoogle Scholar
  64. 64.
    Kitai, A. et al.: Continuous Culture using a Perforated Plate Column. Proc. IV Int. Ferm. Symp., Kyoto, Japan, March 19, 1972Google Scholar
  65. 65.
    Hudson, J.: Recent Changes in Brewing Technology, Proc. IV IVF: Ferment Technology Today, Proc. IV Int. Ferm. Symp. p. 629 (1972)Google Scholar
  66. 66.
    Jirmann, F., Runkel, U. D.: Brauwelt, 107, 1453 (1967)Google Scholar
  67. 67.
    Hough, J. et al.: J. Inst. Brew 68, 478 (1962)Google Scholar
  68. 68.
    Greenshields, R., Smith, E.: Tower Fermentation Systems and Their Applications, Chemical Engineer, #249, May 1971Google Scholar
  69. 69.
    Royston, M. G.: Process Biochem. 1, 215 (1966)Google Scholar
  70. 70.
    Klopper, W. J. et al.: Proc. of X Congress of Eur. Brew. Convention, Stockholm, 1965, p. 238. Elsevier Publ. Co., Holland 1965Google Scholar
  71. 71.
    Shore, D. T., Royston, M. G.: Chem. Eng. Lond., 218, CE 99 (May 1968)Google Scholar
  72. 72.
    Ault, R. G. et al.: J. Inst. Brew. 75, 260 (1969)Google Scholar
  73. 73.
    Wick, E., Popper, K.: Biotech. Bioeng. 19, 235 (1977)CrossRefGoogle Scholar
  74. 74.
    Sitton, O. C, Gaddy, J. L.: Design and Performance of an Immobilized Cell Reactor for Ethanol Production. #41D AIChE 72nd Annual Meeting, San Francisco, CA, Nov. 25, 1979Google Scholar
  75. 75.
    Gerhardt, P., Gallup, D.: J. Bact., 85, 919 (1963)Google Scholar
  76. 76.
    Schultz, J., Gerhardt, P.: Bact. Rev., 33, #1 (1969)Google Scholar
  77. 77.
    Pirt, S. J.: Principles of Microbe and Cell Cultivation. Halsted Press 1975Google Scholar
  78. 78.
    Maiorella, B., Glenchur, T.: Univ. Calif., Dept. Chem. Eng., Berkeley, Notebook, RP 300 (1979)Google Scholar
  79. 79.
    Margaritis, A., Wilke, C. R.: Biotech. Bioeng. 20, 709 (1978)CrossRefGoogle Scholar
  80. 80.
    Margaritis, A., Wilke, C. R.: Biotech. Bioeng. 20, 727 (1978)CrossRefGoogle Scholar
  81. 81.
    Communication — Wilke, C. R., Univ. Calif., Dept. Chem. Eng., Berkeley 1979Google Scholar
  82. 82.
    Kan, J. K., Shuler, M. L.: An Immobilized Whole Cell Hollow Fiber Reactor or Urocanic Acid Production, AIChE Symp. Ser. 172, p. 31. Food Pharm. and Bioeng. 1976–1977Google Scholar
  83. 83.
    Breslau, B. R., Kilcullen, B. M.: Continuous Ultrafiltration. Amer. Dairy Sci. Assoc, 71 Ann. Meeting, Raleigh, N.C., June 21, 1976Google Scholar
  84. 84.
    Annon.: Romicon Hollow Fiber Ultra Filtration Membrane Cartridges, Romicon, Inc., 100 Cummings Park, Woburn, Mass. 01801 (1979)Google Scholar
  85. 85.
    Webster, I. A. et al.: Biotech. Bioeng. 21, 1725 (1979)CrossRefGoogle Scholar
  86. 86.
    Kan, J. K., Shuler, M. L.: Biotech. Bioeng. 20, 217 (1978)CrossRefGoogle Scholar
  87. 87.
    Vicroy, B.: Communication — Univ. Calif., Dept. Chem. Eng., Berkeley 1979Google Scholar
  88. 88.
    Robertson, C. R.: Enzymes, Microbes, and Chemical Engineers, Chem. Eng. Dept., Stanford Univ., presented at Univ. Calif. Berkeley, CA, Chem. Eng. Colloguiq, Jan. 1980Google Scholar
  89. 89.
    Blanch, H. W.: Communication — Univ. Calif., Dept. Chem. Eng., Berkeley 1979Google Scholar
  90. 90.
    Baker, D., Kirsop, B. H.: J. Inst. Brew 79, 487 (1973)Google Scholar
  91. 91.
    Berdelle-Hilge, P.: U.S. Patent #3, 737, 323, June 5, 1973Google Scholar
  92. 92.
    Annon.: Chemicals by Yeast Fermentation, p. 259, Food Tech., Rev., #45 (Yeast for Food and Other Purposes) Johnson, Jeanne C. (ed.), Noyes Data Corp., Parkridge, N.J. 1977Google Scholar
  93. 93.
    Abbot, B.: Immobilized Cells, Ann. Reports on Fermentation Processes, Vol. 2, Chapter 5, Perlman, D. (ed.), Academic Press, New York 1977Google Scholar
  94. 94.
    Kierstan, M., Bucke, C.: Biotech. Bioeng. 19, 387 (1977)CrossRefGoogle Scholar
  95. 95.
    Divies, C.: French Patent #844, 766 (1977)Google Scholar
  96. 96.
    Chibata, I. et al.: Appl. Microbiol. 27, 878 (1974)PubMedGoogle Scholar
  97. 97.
    Venkatasubramanian, K. et al.: “Enzyme Engineering”, #3, Pye, L. K. and Weetal, H. (eds.), Plenum Press 1977Google Scholar
  98. 98.
    Griffith, W., Compere, A.: Dev. Ind. Microbiol. 17, 241 (1976)Google Scholar
  99. 99.
    Kennedy, J. et al.: Nature 261, 242, May 20, 1976CrossRefPubMedGoogle Scholar
  100. 100.
    Pye, E. K., Humphrey, A. E.: The Biological Production of Liquid Fuels from Biomass. Univ. Penn., Interim report to U.S. Department of Energy, p. 79. Task 7, June–Aug., 1979Google Scholar
  101. 101.
    Pye, E. K., Humphrey, A. E.: Production of Liquid Fuels from Cellulosic Biomass, Proc. — 3rd Ann. Biomass Energy Systems Conf., p. 69. U.S.D.O.E., Solar Energy Res. Inst., Golden, Colo., June 5, 1980Google Scholar
  102. 102.
    Pye, E. K., Humphrey, A. E.: The Biological Production of Liquid Fuels from Biomass, Univ. Penn, Interim Report to U.S. Dept. of Energy, Feb.–May 1979Google Scholar
  103. 103.
    Craig, L.: Differential Dialysis, Science 144, No. 3622 (1964)Google Scholar
  104. 104.
    Pye, E. K., Humphrey, A. E.: The Biological Production of Liquid Fuels from Biomass, Univ. Penn., Interim Report to U.S.D.O.E., June–Aug., 1979Google Scholar
  105. 105.
    Gregor, H.: Membrane Processes of Separation and Concentration in Biomass Harvesting, Production and Refining. Proc. 3rd Ann. Biomass Energy System Conf., p. 39, U.S.D.O.E. Solar Energy Res. Inst., Goldon, Colo., June 5, 1979Google Scholar
  106. 106.
    Gregor, H., Jefferies, T.: Ethanolic Fuels from Renewable Resources in the Solar Age, Annals of New York Academy of Science, Vol. 326, p. 273, 1979Google Scholar
  107. 107.
    Ramlingham, A., Finn, R. K.: Biotech. Bioeng., 19, 583 (1977)CrossRefGoogle Scholar
  108. 108.
    Maiorella, B., Wilke, C.: Biotech. Bioeng., 22 (8), 1749 (1980)CrossRefGoogle Scholar
  109. 109.
    Zimmer, A.: Latest Developments in Energy Efficient Evaporation, Weigand Evaporators, Inc., 5585 Sterrett Pl., Columbia, Maryland 1979Google Scholar
  110. 110.
    O'Neil, D. J. et al.: Design Fabrication and Operation of a Biomass Fermentation Facility, Tech. Prog, report #2, p. 112, to U.S.D.O.E., Georgia Inst. of Tech., Atlanta Jan.–March 1979Google Scholar
  111. 111.
    Scheller, W., Mohr, B.: Net Energy Analysis of Ethanol Production, Omaha, NE., Dept. of Chem. Eng., Univ. Nebraska 1977Google Scholar
  112. 112.
    Sonnenblick, M.: Fusion, Sept. p18, 1979Google Scholar
  113. 113.
    Annon.: Power Alcohol, Process Engineering Company, Mannedorf, Switzerland 1979Google Scholar
  114. 114.
    Weust, R.: Handbook of Chemistry and Physics, 5th Ed, The Chemical Rubber Co., Cleveland, Ohio (1971)Google Scholar
  115. 115.
    Ofsuki, H., Williams, F.: Chem. Eng. Prog. Symp. Series, No. 6, Vol. 59, p. 55 (1953)Google Scholar
  116. 116.
    Suomalainen, H., Ronkainen, P.: Tech. Quart. Master Brewers Assoc. Am., 5, 119 (1968)Google Scholar
  117. 117.
    Suomalainen, H. et al.: Aspects of Yeast Metabolism. A. Guinness Symp., Dublin, Blackwell Scientific Publications, Oxford 1968Google Scholar
  118. 118.
    Windholz, M.: The Merck Index, Ninth Ed., Merck and Co., Rahway, N.J. 1976Google Scholar
  119. 119.
    Webb, A., Ingraham, J.: Adv. Appl. Microbiol. 5, 317 (1963)Google Scholar
  120. 120.
    Suomalainen, H.: Suom. Kemistilehti, 41A, p. 239, 1968Google Scholar
  121. 121.
    Ladisch, M.: Fermentable Sugars from Cellulosic Residues, Process Biochem. p. 21, Jan. 1979Google Scholar
  122. 122.
    Lecat, M.: Tables Azeotropigues, UCCLE-Bruxelles 1949Google Scholar
  123. 123.
    King, C. J.: Separation Processes. 2nd Ed., McGraw-Hill, N.Y. 1980Google Scholar
  124. 124.
    Norman, W.: Trans, of the Institution of Chemical Eng., 23, 66 (1945)Google Scholar
  125. 125.
    Black, C. et al.: Azeotropic Distillation Results from Automatic Computer Calculations. Extractive and Azeotropic Distillation ACS Symp. No. 115, 1972Google Scholar
  126. 126.
    Black, C.: Chem. Eng. Prog, p. 78, Sept. 1980Google Scholar
  127. 127.
    Wentworth, T., Othmer, D.: Trans. Am. Inst. Chem. Engrs. 36, 785 (1980)Google Scholar
  128. 128.
    Othmer, D., Wentworth, T.: Ind. Eng. Chem., 32, 1588 (1940)CrossRefGoogle Scholar
  129. 129.
    Wentworth, T. et al.: Trans. An. Inst. Chem. Engrs., 39, 565 (1943)Google Scholar
  130. 130.
    Wentworth, T.: U.S. Patent 2,358,193, Sept. 1944Google Scholar
  131. 131.
    Hoffman, E.: Azeotropic and Extractive Distillation, Wiley, N.Y. 1964Google Scholar
  132. 132.
    Berg, L.: Chem. Eng. Progr., 65 (9) 53 (1969)Google Scholar
  133. 133.
    Black, C., Ditsler, D.: Dehydration of Aqueous Ethanol Mixtures by Extractive Distillation, Adv. Chemistry, 115, 1 (1972)Google Scholar
  134. 134.
    Beebe, A. et al.: Ind. Eng. Chem., 34, 1501 (1942)CrossRefGoogle Scholar
  135. 135.
    Furter, W.: Extractive Distillation by Salt Effect, Adv. Chemistry Series, 115, 35 (1972)Google Scholar
  136. 136.
    Jaques, D., Furter, W.: Prediction of Vapor Composition in Isobaric Vapor-Liquid Systems Containing Salts at Saturation. Adv. Chemistry Series, 115, 159 (1972)Google Scholar
  137. 137.
    Meranda, D., Furter, W.: Salt Effects on Vapor-Liquid Equilibrium: Some Anomalies, AIChE J., 20, no. 1, 103 (Jan. 1978)CrossRefGoogle Scholar
  138. 138.
    Hatch, L.: Ethvl Alcohol, Enhay Chem. Co., N.Y. 1962Google Scholar
  139. 139.
    Ellis, C.: The Chemistry of Petroleum Derivatives, Vol. 2, Reinhold, N.Y. 1937Google Scholar
  140. 140.
    Ladisch, M., Dyck, K.: Science, 205, 898 (31, Aug. 1979)Google Scholar
  141. 141.
    G. Frankfurter, U.S. Patent 1,350,258, Dec. 20, 1918Google Scholar
  142. 142.
    Annon.: Production of Absolute Alcohol by the Haig Process, Iut'l. Sugar J., 35, 266 (1933)Google Scholar
  143. 143.
    Myers, R.: Ethanol as a Fuel. Chem. and Eng. News, 4–9, (April 28, 1980)Google Scholar
  144. 144.
    Wilke, C. et al.: Ethanol Production and Recovery from Biomass Sugars. Lawrence Berkeley Laboratory, E & E Ann. Report 1980Google Scholar
  145. 145.
    Ricard, E., Guinot, H.: U.S. Patent 1,659,958, Feb. 21, 1928Google Scholar
  146. 146.
    Maiorella, B.: Production of Gasohol from A. Dilute Aqueous Alcohol Solution and Gasoline, U.C. Patent, Case No. 142-80, 1980Google Scholar
  147. 147.
    Hartline, F.: Science 206, 41, (October 5, 1979)Google Scholar
  148. 148.
    Wentworth, T.: U.S. Patent 2,152,164, March 28, 1934Google Scholar
  149. 149.
    Othmer, D.: Ind. Eng. Chem., 28, 1435 (1936)CrossRefGoogle Scholar
  150. 150.
    Considine, D.: Chem. and Process Tech. Encyclopedia, p. 44, McGraw-Hill, N.Y. 1974Google Scholar
  151. 151.
    Andronikashili, T. et al.: Preparation of Absolute Ethyl Alcohol by Zedite, Zavod. Lab., Vol. 32, no. 10 1211, 1966Google Scholar
  152. 152.
    Milton, D. et al.: Gasohol Economic Feasibility Study Energy Research and Development Center, Univ. of Nebr., July 1978Google Scholar
  153. 153.
    Stone Webster Engineering Corp., Preliminary Economic Evaluation of Nebraska Grain Alcohol Plant, Agricultural Products Industrial Utilization Committee, State of Nebraska Dec. 1976Google Scholar
  154. 154.
    Lipinski, E. et al.: Systems Study of Fuels from Sugar Cane, Sweet Sorghum and Sugar Beets. Battelle, Columbus Labs, for Energy Res. and Develop. Admin., September 1976Google Scholar
  155. 155.
    Humphrey, A. et al.: Biological Production of Liquid Fuels and Chemical Feedstocks, Univ. Penn. and General Electric Co., for Congress of the United States Office of Technol. Assessment 1978Google Scholar
  156. 156.
    Harden, A.: Alcoholic Fermentation, p. 168, 1932Google Scholar
  157. 157.
    Stevens, R.: J. Inst. Brew, 66, 453 (1960)Google Scholar
  158. 158.
    Webb, A., Ingraham, J.: Adv. Appl. Microbiol. 5, 317 (1973)Google Scholar
  159. 159.
    Rainbow, C.: Brewers Yeast. In: The Yeasts, Vol. 13, Rose and Harrison (eds.), Academic Press, New York 1970Google Scholar
  160. 160.
    Harrison, J., Graham, J.: Yeasts in Distillery Practice. In: The Yeasts, Vol. 13, Rose and Harrison (eds.), Academic Press, New York 1970Google Scholar
  161. 161.
    Robinson, P.: Methyl Alcohol. Chem. and Process Tech. Encyclopedia. Considine, D. (ed.), McGraw-Hill, N.Y. 1974Google Scholar
  162. 162.
    Sciamanna, A. et al.: Composition and Utilization of Cellulose for Chemicals from Agricultural Residues, LBL, Report. 5966, UC-4, Dec. 1977Google Scholar
  163. 163.
    Wilke, C. et al.: Raw Materials Evaluation and Process Development Studies for Conversion of Cellulose to Sugar and Ethanol, Lawrence Berkeley Laboratory, LBL-7847, 1978Google Scholar
  164. 164.
    Falkehay, S.: J. Appl. Polymer Sci. (Appl. Polymer Symp. 28) p. 247 (1975)Google Scholar
  165. 165.
    Annon.: Lignin Conversion Process Shows Promise, Chem. Eng. News, Nov. 3, 1980Google Scholar
  166. 166.
    Stephen, D. et al.: Chemical Feedstocks and Fuels from Lignin, AIChE Symp. Series No. 181 Vol. 74, 1978Google Scholar
  167. 167.
    Fong, W. et al.: The Cost of Producing Fermentation Ethanol from Biomass. SRI Int'I, Presented at AIChE 72nd Meeting, San Francisco, CA, Nov. 29, 1979Google Scholar
  168. 168.
    Solomons, G. L.: Constituents of Fermentation Culture Medium. In: Material and Methods in Fermentation, Chapt. 3, Academic Press, New York 1969Google Scholar
  169. 169.
    Paul, B. P., Manmohar: Recovery of Waste Heat in Power Alcohol Distillation Plant. Ethyl Alcohol Production Technique, Noyes Development Corp., 1964Google Scholar
  170. 170.
    Paul, B. P., Mitra, A. K.: Efficient Use of Waste Heat in Rectified Spirit Distillation Plant. Ethyl Alcohol Production Technique, Noyes Development Corp. 1964Google Scholar
  171. 171.
    Bitford, H. R. et al.: Ind. Eng. Chem. 34 (11), 1406 (1942)CrossRefGoogle Scholar
  172. 172.
    Wong, H. et al.: Media Development and Kinetics of Ethanol Fermentation, presented at the 79th Ann. Meeting of the American Society for Microbiology, Los Angeles, Ca., May 4–8, 1979Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • B. Maiorella
    • 1
  • Ch. R. Wilke
    • 1
  • H. W. Blanch
    • 1
  1. 1.Lawrence Berkeley Laboratory and Department of Chemical EngineeringUniversity of CaliforniaBerkeley

Personalised recommendations