Advertisement

Bioenergy pp 15-42 | Cite as

Structure, pretreatment and hydrolysis of cellulose

  • Martin M. Chang
  • Terry Y. C. Chou
  • George T. Tsao
Conference paper
Part of the Advances in Biochemical Engineering book series (ABE, volume 20)

Abstract

The structural features of cellulose which are important to enzymatic degradation are discussed. Pretreatments to facilitate the accessibility of cellulose are reviewed; in situ wet milling, semi-chemical pulping, and solvent pretreatment are considered the most effective to-date.

The hydrolysis of cellulose by enzyme is a complex phenomenon affected by both the structure of the substrate and condition of reaction. Analyses based on Michaelis-Menten kinetics had limited success. Results from traditional kinetic analysis indicated that cellulose was normally degraded as if it were homogeneous for the enzyme. However, under some specific conditions, such as in situ wet milling and solvent pretreatment, a bimodal degradation might prevail. A comprehensive model to account for this variable mode of cellulose hydrolysis is discussed.

Keywords

Enzymatic Hydrolysis Soluble Sugar Cellulose Fiber Amorphous Region Cellulose Hydrolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

β

β-bonds

a, b, c, ϑ

unit cell dimensional parameters

DP

degree of polymerization

Å

Angstrom

LODP

leveling-off degree of polymerization

βL

looped β-bond

S1, S2, S3

three sublayers of the secondary wall

m

meter

g

gram

h

hour

°C

degree Celsius

Cx

endo-glucanase

C1

exo-glucanase

Cb

cellobiase

E

enzyme

S

substrate

P

product

t

time

E0

total enzyme concentration

k1 k2, k−1

reaction rate constants

v

reaction rate

V

maximum velocity

S0

initial substrate concentration

Xm

absorption parameter of enzyme

KM

Michaelis-Menten constant

K, K′

reaction rate constants

A, B, D

constants

Ks

dissociation constant for ES complex

Ki, Kc

inhibition constants for enzyme and complex respectively

ki

rate constant for ith component

Si

substrate concentration of ith component

C

molecular cellulose

k

rate constant

Ci

molecular cellulose of component i

Pi

product produced from component i

α

fraction of cellulose molecules undergo consecutive reaction

I

intermediate chain length cellulose

K′, k″

rate constants

HC

hydrocellulose

αi

fraction of cellulose component i undergo consecutive reaction

ki′, ki

rate constants of component i

(HC)i

hydrocellulose from component i

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. 1.
    Saeman, J. F.: Ind. Engr. Chem., Analyst. Ed. 37 (1), 43 (1945)Google Scholar
  2. 2.
    Meyer, K. H., Mark, H.: Ber. 61, 593 (1928)Google Scholar
  3. 3.
    Meyer, K. H., Mark, H.: Z. Physik. Chem. B2, 115 (1929)Google Scholar
  4. 4.
    Meyer, K. H., Misch, L.: Helv. Chim. Acta 20, 232 (1937)CrossRefGoogle Scholar
  5. 5.
    Meyer, K. H.: Ber. 70, 266 (1937)Google Scholar
  6. 6.
    Ellis, K. C., Warwicker, J. O.: I. Polymer Sci. 56, 339 (1962)CrossRefGoogle Scholar
  7. 7.
    Sarko, A., Muggli, R.: Macromolecules 7, 486 (1974)CrossRefGoogle Scholar
  8. 8.
    Gardner, K. H., Blackwell, J.: J. Biopolymers 13 (10), 1975 (1974)CrossRefGoogle Scholar
  9. 9.
    Atalla, R. H., Nagel, S. C.: Science 185, 522 (1974)PubMedGoogle Scholar
  10. 10.
    Kolpak, F. J., Blackwell, J.: Macromolecules 9, 273 (1976)CrossRefPubMedGoogle Scholar
  11. 11.
    Stipamovic, A. J., Sarko, A.: Macromolecules 9, 851 (1976)CrossRefGoogle Scholar
  12. 12.
    Chanzy, H., Dube, M., Marchessault, R. H.: Tappi, 61 (7), 81 (1978)Google Scholar
  13. 13.
    French, A. D.: Carbohydrate Research 61, 67 (1978)CrossRefGoogle Scholar
  14. 14.
    Buleon, A., Chanzy, H.: J. Polymer Sci., Polymer Physics 16, 833 (1978)Google Scholar
  15. 15.
    Blackwell, J., Kolpak, F. J., Gardner, K. H.: Tappi 61 (1), 71 (1978)Google Scholar
  16. 16.
    Ellefsen, O., Tonnesen, B. A.: Cellulose and Cellulose Derivatives, Bikales and Segal (eds.), IV, p. 151. New York: John Wiley 1971Google Scholar
  17. 17.
    Manley, R. St. J.: Pulp Paper Report (PPRIC) 37, 18 (1970)Google Scholar
  18. 18.
    Meyer, K. H.: Natural and Synthetic Polymers p. 312, Berlin: John Wiley 1950Google Scholar
  19. 19.
    Ingram, I.: Electron Diffraction and Microscopy of Cotton Cellulose, Paper presented at First Intern. Cotton Conf., Paris, April 1968Google Scholar
  20. 20.
    Scallan, A.: Textile Research J. 41, 647 (1971)Google Scholar
  21. 21.
    Chang, M.: J. Polymer Sci. C-36, 343 (1971)Google Scholar
  22. 22.
    Chang, M., Tsao, G. T.: The Effect of Structure on Hydrolysis of Cellulose, Paper presented at 72nd AIChE Annual Meeting, San Francisco 1979Google Scholar
  23. 23.
    Sakaki, T., et al.: Biotech. Bioeng. 21, 1031 (1979)CrossRefGoogle Scholar
  24. 24.
    Tsao, G. T.: J. Chinese Chem. Eng. 9, 1 (1978)Google Scholar
  25. 25.
    Addren, R. K.: Applied Polymer Symp. 28, 205 (1975)Google Scholar
  26. 26.
    Cowling, E. B., Brown, W.: Adv. in Chem. Ser. 95, 152 (1969)Google Scholar
  27. 27.
    Stone, J. E., Scallan, A. M., Donefer, E., Ahlgren, E.: Cellulases and Their Applications, Adv. in Chem. Ser. 95, 219 (1969)Google Scholar
  28. 28.
    Milieu, M. A., Effland, M. I., Caulfield, D. F.: Adv. in Chem. Ser. 181, 71 (1979)Google Scholar
  29. 29.
    Earland, C., Raven, D. J.: J. Textile Inst. 2, 69 (1977)Google Scholar
  30. 30.
    Cowling, E. B., Kirk, T. K.: Biotech. Bioeng. Symp. 6, 95 (1976)Google Scholar
  31. 31.
    Mclntosh, D. C.: Tappi 50, 482 (1967)Google Scholar
  32. 32.
    Leopold, B., Monlik, S. K. R.: Tappi 57, 334 (1968)Google Scholar
  33. 33.
    Kelsey, R. G., Shafizadeh, F.: Biotech. Bioeng. 22, 1025 (1980)CrossRefGoogle Scholar
  34. 34.
    Chou, T.: Ph. D. Dissertation, Purdue University, May 1980Google Scholar
  35. 35.
    Chang, M., Tsao, G. T.: Colloque Cellulolyse Microbienne, p. 27 CNRS Marseilles, France, (1980)Google Scholar
  36. 36.
    Jurasek, L.: Developments in Industrial Microbiology 20, 177 (1979)Google Scholar
  37. 37.
    MacDonald, R. G.: Pulp Paper Manufacture Vol. 2, p. 453, New York: McGraw-Hill 1969Google Scholar
  38. 38.
    Seaman, J. E., Millett, M. A., Lawton, E. J.: Ind. Eng. Chem. 44, 2848 (1952)CrossRefGoogle Scholar
  39. 39.
    Sarkov, V. I., Dubush, O. Q.: Zh. Prikl Khim. 29 (9), 1411 (1956)Google Scholar
  40. 40.
    Sarkov, V. I., Levanova, V. P.: Gidroliz, Lesokhim. Prom. 13 (1), 5 (1960)Google Scholar
  41. 41.
    Welseth, G. S.: Tappi 35 (5), 233 (1952)Google Scholar
  42. 42.
    Ladisch, M. R., Ladisch, C. R., Tsao, G. T.: Science 201, 743 (1978)Google Scholar
  43. 43.
    Hsu, T. A., Ladisch, M. R., and Tsao, G. T.: Chemtech 5, 315 (1980)Google Scholar
  44. 44.
    Flickinger, M., Gong, C. S., Chen, L. F.: Conversion of Hemicellulose Carbohydrates, in: Adv. Biochem. Eng., Fiechter, A. (ed.), this volumeGoogle Scholar
  45. 45.
    Dunning, J. W., Lathrop, E. C.: Ind. Eng. Chem. 37 (1), 24 (1945)CrossRefGoogle Scholar
  46. 46.
    Etheridge, D. E.: Can. J. Bot. 35, 615 (1957)Google Scholar
  47. 47.
    Millett, M. A., Moore, W. E., Saeman, J. F.: Ind. Eng. Chem. 46, 1493 (1954)CrossRefGoogle Scholar
  48. 48.
    Bertrand, D., Buleon, A.: Colloque Cellulolyse Microbienne, p. 127, CNRS, Marseille France 1980Google Scholar
  49. 49.
    Cuggolz, J. R., Kohler, G. O., Klopfenstein, T.: J. Animal Sci. 33 (151), 167 (1971)Google Scholar
  50. 50.
    Mandel, M., et al.: Biotech. Bioeng. 14, 1471 (1974)CrossRefGoogle Scholar
  51. 51.
    Baker, A. J., Millet, M. A., Satter, L. D.: Cellulose Technol. Research, ACS Symp. Series 10, p. 6, Washington, DC (1975)Google Scholar
  52. 52.
    Grethlein, H. E.: J. Appl. Chem. Biotech. 28 (4), 296 (1978)Google Scholar
  53. 53.
    Humphrey, A. E.: Adv. in Chem. Series 181, 26 (1979)Google Scholar
  54. 54.
    Nisizawa, K. J.: J. Ferment. Technol. 51 (4), 267 (1973)Google Scholar
  55. 55.
    Wood, T. M.: Biotech. Bioeng. Symp. 5, 111 (1975)Google Scholar
  56. 56.
    Ghose, T. K.: Adv. Biochem. Eng. 7, 39 (1977)Google Scholar
  57. 57.
    Beriksson, K. E.: Biotech. Bioeng. 20, 317 (1978)CrossRefGoogle Scholar
  58. 58.
    Wood, T. M., McCrae, S. I.: Adv. in Chem. Series 181, 181 (1979)Google Scholar
  59. 59.
    Hallowell, G., Giffin, M.: Biochem. J. 135, 587 (1973)PubMedGoogle Scholar
  60. 60.
    Gong, C. S., Ladisch, M. R., Tsao, G. T.: Adv. in Chem. Series 181, 261 (1979)Google Scholar
  61. 61.
    Mandel, M., Reese, E. T.: Develop. Ind. Microbial. 5, 5 (1964)Google Scholar
  62. 62.
    Howell, J. A., Stuck, J. E.: Biotech. Bioeng. 17, 873 (1975)CrossRefGoogle Scholar
  63. 63.
    Huang, A. A.: Biotech. Bioeng. 17, 1421 (1975)CrossRefGoogle Scholar
  64. 64.
    Hsu, T. A., Tsao, G. T.: Biotech., Bioeng. 21, 2235 (1979)Google Scholar
  65. 65.
    Ghose, T. K., Das, K.: Adv. in Biochem. Eng., Vol. 1, p. 55, Berlin: Springer 1971Google Scholar
  66. 66.
    Van Dyke, B.: Ph. D. Dissertation, Mass. Inst. Technol., Sept. 1972Google Scholar
  67. 67.
    Brandt, D., Hontz, L., Mandel, M.: AlChE Symp. Series 69, 127 (1973)Google Scholar
  68. 68.
    Reese, E. T., Segal, L., Tripp, V. W.: Txtile Research J. 27, 629 (1957)Google Scholar
  69. 69.
    Reese, E. T.: Marine Boring and Fouling Organisms, Ray O. L. (ed.) p. 265, Seattle: University of Washington Press 1959Google Scholar
  70. 70.
    Amemura, A., Terui, G.: J. Fermen. Technol. 43, 275 (1965)Google Scholar
  71. 71.
    Nisizawa, T., Suzuki, J., Nisizawa, K.: J. Ferment. Technol. 44, 659 (1966)Google Scholar
  72. 72.
    Rinaudo, M., Bornoud, F., Merle, J. P.: J. Polymer Sci. C-28, 197 (1969)Google Scholar
  73. 73.
    Oginawa, Y., Arai, A.: J. Japan Technical Assn. Pulp Paper Ind. 21, 209 (1967)Google Scholar
  74. 74.
    Philip, B., et al.: Adv. in Chem. Series 181, 128 (1978)Google Scholar
  75. 75.
    Norkrans, B.: Physicol. Plantarum 3, 75 (1950)Google Scholar
  76. 76.
    Cowling, E. B.: U.S.D.A., Technical Bulletin, No. 1258, p. 48 (1961)Google Scholar
  77. 77.
    Chang, M., Tsao, G. T.: Mechanism of Enzymatic Hydrolysis of Cellulose, paper presented at the 161th ACS Meeting, Atlanta 1981Google Scholar
  78. 78.
    Selby, K.: Adv. in Chem. Series 95, 149 (1969)Google Scholar
  79. 79.
    Segal, L.: Cellulose and Cellulose Derivatives Part V, p. 733, Bikalis and Segal (eds.), New York: John Wiley 1971Google Scholar
  80. 80.
    Gallo, B. J., et al.: Biotech. Bioeng. Symp. 8, 89 (1979)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Martin M. Chang
    • 1
  • Terry Y. C. Chou
    • 1
  • George T. Tsao
    • 1
  1. 1.Laboratory of Renewable Resources EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations