An extension of Rabin's complete proof concept

  • Jerzy W. Jaromczyk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 118)


Convex Hull Linear Form Variety Versus Identity Property Complete Proof 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avis, D., Lower bounds for geometric problems. Allerton Conference, October 1980.Google Scholar
  2. 2.
    Avis, D., Comments on a lower bound for convex hull determination. Inf. Proc. Let., 11 (1980), 126.Google Scholar
  3. 3.
    McCallum, D., Avis, D., A linear algorithm for finding the convex hull of a simple polygon. Inf. Proc. Let., 9 (1979), 201–206.Google Scholar
  4. 4.
    Jaromczyk, J., Linear decision trees are too weak for convex hull problem. to appear in Inf. Proc. Let. Google Scholar
  5. 5.
    Jaromczyk, J., Lower bounds for problems defined by polynomial inequalities. FCT'81.Google Scholar
  6. 6.
    Jaromczyk, J., A note on Rabin's complete proof notion (preliminary version). IInf UW Reports, 102 (1981).Google Scholar
  7. 7.
    Kendig, K., Elementary Algebraic Geometry. Springer Verlag, New York 1977.Google Scholar
  8. 8.
    Rabin, M., Proving simultaneous positivity of linear forms. J. Comp. Sys. Sci., 6 (1972), 639–650.Google Scholar
  9. 9.
    Spira, P., M., Complete linear proofs of linear inequalities. J. Comp. Sys. Sci., 6 (1972), 205–216.Google Scholar
  10. 10.
    van der Waerden, B., L., Einführung in die algebraische Geometrie. Springer Verlag, Berlin, 1973.Google Scholar
  11. 11.
    Yao, A., A lower bound to finding convex hulls. Report STAN-CS-79-733, April 1979.Google Scholar
  12. 12.
    Yao, A., C., Rivest, R., On the polyhedral decision problem. SIAM J. Comp., 9 (1980), 343–347.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Jerzy W. Jaromczyk
    • 1
  1. 1.Institute of InformaticsWarsaw University, PKiN VIII p.WarsawPoland

Personalised recommendations