Advertisement

On the complexity of word problems in certain Thue systems

Preliminary report
  • R. Book
  • M. Jantzen
  • B. Monien
  • C. Ó'Dúnlaing
  • C. Wrathall
Communications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 118)

Keywords

Word Problem Turing Machine Word Prob Finite Alphabet Thue System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Book, Confluent and other types of Thue systems, J. Assoc. Comput. Mach., to appear.Google Scholar
  2. 2.
    R. Book, The undecidability of a word problem: on a conjecture of Strong, Maggiolo-Schettini, and Rosen, Info. Proc. Letters, to appear.Google Scholar
  3. 3.
    R. Book, M. Jantzen, and C. Wrathall, Monadic Thue systems, Theoret. Comp. Sci., to appear.Google Scholar
  4. 4.
    R. Book and C. Ó'Dúnlaing, Testing for the Church-Rosser property, Theoret. Comp. Sci., to appear.Google Scholar
  5. 5.
    A. Ehrenfeucht and G. Rozenberg, On the emptiness of the intersection of two DOS-languages problem, Info. Proc. Letters 10 (1980), 223–225.Google Scholar
  6. 6.
    G. Huet, Confluent reductions: abstract properties and applications to term-rewriting systems, J. Assoc. Comput. Mach. 27 (1980), 797–821.Google Scholar
  7. 7.
    H. Lewis and C. Papadimitrio, Symmetric space-bounded computation, Automata, Languages, and Programming, Lecture Notes in Computer Science 85 (1980), 374–384.Google Scholar
  8. 8.
    M. Nivat (with M. Benois), Congruences parfaites et quasiparfaites, Seminaire Dubreil, 25e Année (1971–72), 7-01-09.Google Scholar
  9. 9.
    R. Strong, A. Maggiolo-Schettini, and R. Rosen, Recursion structure simplification, SIAM J. Computing 4 (1975), 307–320.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • R. Book
    • 1
  • M. Jantzen
    • 2
  • B. Monien
    • 3
  • C. Ó'Dúnlaing
    • 1
  • C. Wrathall
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaSanta BarbaraU.S.A.
  2. 2.Fachbereich InformatikUniversität HamburgHamburg 13West Germany
  3. 3.Fachbereich Mathematik-InformatikUniversität PaderbornPaderbornWest Germany

Personalised recommendations