On the power of algebraic specifications

  • J. A. Bergstra
  • M. Broy
  • J. V. Tucker
  • M. Wirsing
Part of the Lecture Notes in Computer Science book series (LNCS, volume 118)


We study the expressive power of different algebraic specification methods. In contrast to (nonhierarchical) initial and terminal algebra specifications which correspond to semicomputable and cosemicomputable algebras, hierarchical specifications — as e.g. in the specification language CLEAR — allow to specify hyperarithmetical algebras and are characterized by them. For partial abstract types we prove that every computable partial algebra has an equational hidden enrichment specification and discuss the power of hierarchical partial algebras. Finally we give an example of the specification of a simple nondeterministic programming language.


Partial Algebra Abstract Type Abstract Data Type Conditional Equation Enrichment Specification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ADJ 78]
    J.A. Goguen, J.W. Thatcher, E.G. Wagner: An initial algebra approach to the specification, correctness and implementation of abstract data types. In: Current Trends in Programming Methodology IV. Prentice Hall /1978/, 80–144.Google Scholar
  2. [ANS 80]
    H. Andreka, B. Burmeister, I. Nemeti: Quasivarieties of partial algebras — a unifying approach towards a two-valued model theory for partial algebras. TH Darmstadt, FB Math. Preprint Nr. 557.Google Scholar
  3. [AK 80]
    A. Arnold, M. Karpinski: An easy improvement of Bergstra-Meyer's 81 equations bound for data specifications. EATCS Bull. 12, /1980/.Google Scholar
  4. [BaW 81]
    F.L. Bauer, H. Wössner: Algorithmic language and program development. Berlin: Springer /1981/, to appear.Google Scholar
  5. [BM 80]
    J. Bergstra, J. Meyer: On bounds for the specification of finite monoids by means of equations using only unary hidden functions. Univ. of Leiden, Rep. 80-11, /1980/.Google Scholar
  6. [BT 79]
    J. Bergstra, J. Tucker: Algebraic specifications of computable and semicomputable data structures. Math. Centre Amsterdam Rep. IW 115,/1979/.Google Scholar
  7. [BT 80]
    J. Bergstra, J. Tucker: Initial and final algebra semantics for data type specifications: Two characterization theorems. Math. Centre Amsterdam Rep. IW 142, /1980/.Google Scholar
  8. [BT 80a]
    J. Bergstra, J. Tucker: On bounds for the specification of finite data types by means of equations and conditional equations, Math. Centre Amsterdam Rep. IW 131, /1980/.Google Scholar
  9. [BT 80b]
    J. Bergstra, J. Tucker: Equational specifications for computable data types: six hidden functions suffice and other sufficiency bounds, Math. Centre Amsterdam Rep. IW 128, /1980/.Google Scholar
  10. [BMM 79]
    A. Bertoni, G. Mauri, P. Miglioli: A characterization of abstract data types as model-theoretic invariants, 6th ICALP, LNCS 71, 26–37, /1979/.Google Scholar
  11. [BMMW 79]
    A. Bertoni, G. Mauri, P. Miglioli, M. Wirsing: On different approaches to abstract data types and the existence of recursive models. EATCS Bull. 9, 47–57, /1979/.Google Scholar
  12. [BDPPW 79]
    M. Broy, W. Dosch, H. Partsch, P. Pepper, M. Wirsing: Existential quantifiers in abstract data types. 6th ICALP, LNCS 71, 73–87, /1979/.Google Scholar
  13. [BW 80b]
    M. Broy, M. Wirsing: Initial versus terminal algebra semantics for partially defined abstract types. TU München, TUM-I8018, /1980/.Google Scholar
  14. [BW 81]
    M. Broy, M. Wirsing: On the algebraic specification of nondeterministic programming languages. 6th CAAP, Genova, /1981/.Google Scholar
  15. [BG 77]
    R.M. Burstall, J.A. Goguen: Putting theories together to make specifications. Proc. Int. Conf. A.I.,/1977/.Google Scholar
  16. [BG 80]
    R.M. Burstall, J.A. Goguen: The semantics of CLEAR: a specification language. Proc. C'hagen Winter Schl. on Abstract Software Specifications, /1980/.Google Scholar
  17. [CIP 81]
    Report on the wide spectrum language CIP-L, TU München, to appear.Google Scholar
  18. [DI 76]
    E.W. Dijkstra: A discipline of programming. Prentice Hall, Englewood Cliffs, /1976/.Google Scholar
  19. [EL 80]
    H.D. Ehrich, U. Lipeck: Proving implementations correct — two alternative approaches. IFIP Congress 80.Google Scholar
  20. [EKTWW 80]
    H. Ehrig, H.J. Kreowski, J.W. Thatcher, E.G. Wagner, J.B. Wright: Parameterized data types in algebraic specification languages. 7th ICALP, LNCS 85, 157–168, /1980/.Google Scholar
  21. [Ga 80]
    M.C. Gaudel: Generation et preuve de compilateurs basées sur une semantique formelle des langages de programmation. These d'Etat, Nancy, /1980/.Google Scholar
  22. [GGM 76]
    V. Giarratana, F. Gimona, U. Montanari: Observability concepts in abstract data type specifications. 5th MFCS, LNCS 45, 576–587, /1976/.Google Scholar
  23. [G 75]
    J.V. Guttag: The specification and application to programming of abstract data types. Ph.D. thesis, Univ. of Toronto, /1975/.Google Scholar
  24. [HP 79]
    M.C. Eennessy, G.D. Plotkin: Full abstraction for a simple parallel programming language. MFCS 79,Olomouc.Google Scholar
  25. [HR 80]
    G. Hornung, P. Raulefs: Terminal algebra semantics and retractions for abstract data types. 7th ICALP, LNCS 85, 310–323, /1980/.Google Scholar
  26. [H 80]
    U. Hupbach: Abstract implementation of abstract data type. 9th MFCS, Rydzyna, LNCS 88, 291–304, /1980/.Google Scholar
  27. [Ka 80]
    S. Kamin: Final data type specifications: a new data type specification method. 7th POPL, Las Vegas,/1979/.Google Scholar
  28. [HKP 81]
    H. Klaeren, H. Petzsch: The development of an interpreter by means of algebraic software specifications, FPC 81, Peniscola, LNCS 107, 335–346.Google Scholar
  29. [Lo 80]
    J. Loeckx: Algorithmic specifications of abstract data types. Univ. Saarbrücken, Rep. A 80/12/Google Scholar
  30. [Mj 79]
    M. Majster: Data types, abstract data types and their specification problems. TCS 8, 89–127, /1979/.Google Scholar
  31. [MS 76]
    Z. Manna, A. Shamir: The theoretical aspects of the optimal fixed point. Siam J. of Comp. 5, /1976/.Google Scholar
  32. [Mn 77]
    Y. Manin: A course in mathematical logic, Springer-Verlag, New York, /1977/.Google Scholar
  33. [Pa 60]
    C. Pair: Types abstraits et semantique algébrique des langages de programmation. Centre Recherche Informatique de Nancy, 80-R-011, /1980/.Google Scholar
  34. [R 79]
    H. Reichel: Theorie der Aequoide, Dissertation B. Humboldt-Universität Berlin, /1979/.Google Scholar
  35. [R 80]
    H. Reichel: Initially restricting algebraic theories. 9th MFCS, Rydzyna, LNCS 88, 504–514.Google Scholar
  36. [R 67]
    H. Rogers Jr.: Theory of recursive functions and effective computability. McGraw-Hill: New York, /1967/.Google Scholar
  37. [Sh 67]
    J. Shoenfield: Mathematical logic. Addison-Wesley, Reading, /1967/.Google Scholar
  38. [VP 79]
    P.A. Veloso, T.H. Pequeno: Don't write more axioms than you have to. Univ. Rio de Janeiro, Monografias en Ciencia do Computacao No. 10, /1979/.Google Scholar
  39. [Wa 77]
    M. Wand: Final algebra semantics and data type extensions. Indiana University TR65, /1978/.Google Scholar
  40. [WB 80]
    M. Wirsing, M. Broy: Abstract data types as lattices of finitely generated models. 9th MFCS, LNCS 88, 673–685, /1980/.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • J. A. Bergstra
    • 1
  • M. Broy
    • 2
  • J. V. Tucker
    • 3
  • M. Wirsing
    • 4
  1. 1.Dept. of Computer ScienceUniversity of LeidenLeidenThe Netherlands
  2. 2.Institut für InformatikTechnische Universität MünchenMünchen 2FRG
  3. 3.School of Mathematics and Computer ScienceUniversity of BristolBristolEngland
  4. 4.Dept. of Computer ScienceUniversity of EdinburghEdinburghScotland

Personalised recommendations