Representations of graphs by means of products and their complexity

  • Jaroslav Nešetřil
Invited Lectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 118)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 0.
    Ben Dushnik and E.W. Miller: Partially ordered sets, Amer.J.Math. 16 (1941), 600–610.Google Scholar
  2. 1.
    Garey, M.R. and Johnson, D.S.: Computers and Intractability, W.H.Freeman, San Francisco, 1979.Google Scholar
  3. 2.
    Greenwell, D. and Lovász, L. Applications of product coloring, Acta Math. Acad. Sci.Hungar. 25 (1974),335–340.Google Scholar
  4. 3.
    Kučera, L., Nešetřil, J. and A Pultr A.: The complexity of dimension three and other covering characteristics of a graph, Theor. Comp. Sci. (1980)Google Scholar
  5. 4.
    Lovász, L.: On the cancelation law among finite relational structures, Periodica Math. Hungar. 1, (1971) 145–156Google Scholar
  6. 5.
    Lovász, L., Nešetřil, J. and Pultr, A.: On a product dimension of a graph, J. Comb. Th. B, 29,1 (1980), 47–67Google Scholar
  7. 6.
    Nešetřil, J. and Rödl, V.: Products of graphs and their applicatie ons, to appear in Proceedings of the Kuratowski conference Łagovo, Poland (1981).Google Scholar
  8. 7.
    Nešetřil, J. and Rödl, V.: A simple proof of the Galvin-Ramsey prope property of the class of finite graphs and a dimension of a graph, Discrete Math. 23 (1978), 49–55.Google Scholar
  9. 8.
    Nešetřil, J. and Pultr, A.: On classes of graphs determined by subobjects and factorobjects, Discrete Math. 22 (1978), 287–300Google Scholar
  10. 9.
    Nešetřil, J. and Pultr, A.: A Dushnik-Miller type dimension of graphs and its complexity. In: Lecture Notes in Comp. Sci., No. 56, Springer Verlag, Berlin/New York, (1977), 482–493Google Scholar
  11. 10.
    Poljak, S., Pultr, A. and Rödl, V.: On the dimension of bipartite graphs, to appear in J. of Graph Theory Google Scholar
  12. 11.
    Poljak, S. and Pultr, A.: Dimension by strong products, Comment. Math. Univ. Carolinae (1981)Google Scholar
  13. 12.
    Pultr, A. and Vinárek, J.: Productive classes and subdirect irreducibility, Discrete Math. 20 (1977),159–176.Google Scholar
  14. 13.
    Sabidussi, G.: Subdirect representation of graphs, In: Coll. Math. Soc. J. Bolyai 10 (1973), North Holland, Amsterdam 1199–1226Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Jaroslav Nešetřil
    • 1
  1. 1.KZAA MFFCharles UniversityPraha 8Czechoslovakia

Personalised recommendations