A survey on oracle techniques

  • B. Korte
  • R. Schrader
Invited Lectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 118)

Abstract

The paper gives a survey on oracle approaches in nonlinear and combinatorial optimization. We present a formal definition of oracle algorithms in terms of mappings rather than in the framework of Turing machines with query tapes. We discuss the application of oracle techniques in fixed point theory and convex optimization. Using oracle arguments we derive lower bounds on the computational complexity in combinatorial optimization. Finally we examine formally equivalent concepts in contrast to their computational strength.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, Th., Gill, J., and Solovay, R.; Relativizations of the P = ? NP question. SIAM Journal on Computing 4 (1975) 431–442.Google Scholar
  2. 2.
    Chvátal, V.; Hard knapsack problems. Operations Research 28 (1980) 1402–1411.Google Scholar
  3. 3.
    Cook, S.A.; The Complexity of theorem — proving procedures. Proc. of the 3rd Annual ACM Symposium on the Theory of Computing, Shaker Heights, Ohio (1971) 151–158.Google Scholar
  4. 4.
    Dobkin, D. and Lipton, R.J.; A lower bound of 1/2 n2 on linear search programs for the knapsack problem. In: A. Masurkiewicz (ed.), Mathematical Foundations of Computer Science (1976), Lect. Notes in Corp. Science 45.Google Scholar
  5. 5.
    Grötschel, M., Lovász, L., and Schrijver, A.; The ellipsoid method and its consequences in combinatorial optimization. To appear in: Combinatorica.Google Scholar
  6. 6.
    Hausmann, D., Kannan, R. and Korte, B.; Exponential lower bounds on a class of knapsack algorithms. To appear in: Mathematics of Operations Research.Google Scholar
  7. 7.
    Hausmann, D. and Korte, B.; Oracle algorithms for fixed — point problems — an axiomatic approach. In: Henn et al. (eds.), Optimization and Operations Research, Lecture Notes in Economics and Mathematical Systems 157 (1978) 161–172.Google Scholar
  8. 8.
    Hausmann, D. and Korte, B.; Lower bounds on the worst — case complexity of some oracle algorithms. Discrete Mathematics 24 (1978) 261–276.Google Scholar
  9. 9.
    Hausmann, D. and Korte, B.; Algorithmic versus axiomatic definitions of matroids. Mathematical Programming Study 14 (1981) 98–111.Google Scholar
  10. 10.
    Hausmann, D. and Korte, B.; The relative strength of oracles for independence systems. In: J. Frehse, D. Pallaschke, U. Trottenberg (eds.), Special topics of applied mathematics, North Holland, 1980, 195–211.Google Scholar
  11. 11.
    Jensen, P. M. and Korte, B.; Complexity of matroid property algorithms. To appear in: SIAM Journal on Computing.Google Scholar
  12. 12.
    Judin, D. B. and Nemirovskii, A. S.; Evaluation of the informational complexity of mathematical programming problems. Ekonomikai Matematicheskie Metody 12 (1976) 128–142. Matekon 13,2 (1977) 3–25.Google Scholar
  13. 13.
    Korte, B. and Hausmann, D.; An analysis of the greedy heuristic for independence systems. In: B. Alspach, P. Hell, and D. J. Miller (eds.), Annals of Discrete Mathematcis 2 (1978) 65–74.Google Scholar
  14. 14.
    Korte, B. and Monma, C. L.; Some remarks on a classification of oracle-type-algorithms. In: Collatz et al. (eds.), Numerische Methoden bei graphentheoretischen und kombinatorischen Problemen, Band 2 (1979) 195–215.Google Scholar
  15. 15.
    Korte, B. and Schrader, R.; On the existence of fast approximation schemes. To appear in: O. L. Mangasarian, R. R. Meyer, S. M. Robinson (eds.), Nonlinear Programming 4.Google Scholar
  16. 16.
    Labetoulle, I., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. G.; Preemptive scheduling of uniform machines subject to release dates. Mathematisch Centrum, Preprint BW 99/79 (1979).Google Scholar
  17. 17.
    Milner, E. C. and Welsh, D. J. A.; On the computational complexity of graph theoretical properties. In: Nash-Williams (ed.), Proceedings of the 5th British combinatorial conference, Aberdeen 1975.Google Scholar
  18. 18.
    Nemhauser, G. L. and Wolsey, L. A.; Best algorithms for approximating the maximum of a submodular set function. Mathematics of Operations Research 3 (1978) 177–188.Google Scholar
  19. 19.
    Orevkov, V. P.; A constructive mapping of a spuare onto itself displacing every constructive point. Soviet Mathematics IV (1963) 4–6.Google Scholar
  20. 20.
    Robinson, G. C. and Welsh, D. J. A.; The computational complexity of matroid properties. Mathematical Proceedings of the Cambridge Philosophical Society 87 (1980) 29–45.Google Scholar
  21. 21.
    Sahni, S.; Preemptive scheduling with Due dates. Operations Research 27 (1979) 925–934.Google Scholar
  22. 22.
    Seymour, P. D.; Recognizing graphic matroids. Working Paper, Merton College, Oxford and University of Waterloo, Canada (1979).Google Scholar
  23. 23.
    Welsh, D. J. A.; Matroid theory. Academic Press, London-New York-San Francisco (1976).Google Scholar
  24. 24.
    Yao, A. C., Avis, D. M., and Rivest, R. L.; O(n2 log n) lower bound to the shortest paths problem. In: Proceedings of the Ninth Annual ACM Symposium on the Theory of Computing, 11–17 (1977).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • B. Korte
    • 1
  • R. Schrader
    • 1
  1. 1.Institut für Operations ResearchUniversität BonnBonnW.Germany

Personalised recommendations