The transformational machine: Theme and variations

  • Andrei P. Ershov
Invited Lectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 118)


Normal Form Operational Semantic Control Flow Graph Basic Transformation Lambda Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arsac J. La construction de programmes structures. — Paris: Dunod, 1977.Google Scholar
  2. 2.
    Backus J. Programming language semantics and closed applicative languages. —In: Conf. record of ACM symp. on principles of programming languages. — N.Y.: Association for computing machinery, 1973, p. 71–86.Google Scholar
  3. 3.
    Bauer F.L. Program development by stepwise transformations — the Project CIP. —In: Bauer F.L. and Broy M. (Eds) Program construction. LNCS, vol.69 — Berlin a.o.: Springer, 1979, p. 237–272.Google Scholar
  4. 4.
    Beckman L., Haraldson A., Oskarson O., Sandewall E. A partial evaluator and its use as a programming tool. — Artificial Intelligence, 7, 1976, p. 319–357.Google Scholar
  5. 5.
    Burstall R., Feather M. Program development by transformations: an overview. —In: Proceedings of Toulouse CREST cource on programming. — Toulouse, 1978.Google Scholar
  6. 6.
    Church A. An unsolvable problem of elementary number theory. — Amer. journ. of math., 58, 1936, p. 345–363.Google Scholar
  7. 7.
    Church A. The calculi of lambda-conversion. — Annals of math. stud., no.6. — Princeton, N.J.: Princeton Univ. Press, 1941, ii + 77 p.Google Scholar
  8. 8.
    Emanuelson P. Performance enhancement in a well-structured pattern-matcher through partial evaluation. Dissertation. — Linköping University, Linköping, 1978, 221 p.Google Scholar
  9. 9.
    Ershov A.P. Operatornye algoritmy. III (Ob operatornykh skhemakh Yanova) —In: Lyapunov A.A. (Ed) Problemy kibernetiki. Vypusk 20. — M.: Nauka, 1968, p. 181–200.Google Scholar
  10. 10.
    Ershov A.P. Axiomatics for memory allocation. — Acta Informatica, 6, 1976, no.1, p. 61–76.Google Scholar
  11. 11.
    Ershov A.P. On the partial computation principle. — IPL, 6, 1977, no.2, p. 38–41.Google Scholar
  12. 12.
    Ershov A.P. Mixed computation: potential applications and problems for study. — Theoret. comp. sci. 1981 (to appear).Google Scholar
  13. 13.
    Futamura Y. Partial evaluation of computation process — an approach to a compiler-compiler. — Journ. inst. electr. and commun. eng. Systems, computers, control. 2, Tokyo, 1971, no.5, p. 45–50.Google Scholar
  14. 14.
    Gololobov V.I., Cheblakov B.G., Chinin G.D. Opisaniye yazyka YARMO. Preprint no.247. Mashinno-nezavisimoye yadro. no.248. Makrosredstva. — Novosibirsk, Vychislitel'ny Tsentr, 1980.Google Scholar
  15. 15.
    Gödel K. Über formal unentscheidbare Sätze der Principia mathematica und verwandten Systeme I. — Monatshefte für Math. und Phys., 38, 1931, S. 173–198. (English translation: Godel K. On formally undecidable propositions of Principia mathematica and related systems I. —In: J. van Heijenoort (Ed) From Frege to Gödel. — Cambridge, Mass.: Harward Univ. Press, 1967, p. 596–616.)Google Scholar
  16. 16.
    Graham S.L., Wegman M. A fast and usually linear algorithm for global flow analysis. — Journ. ACM, 23, 1976, no.1, p. 172–202.Google Scholar
  17. 17.
    Haraldson A. A partial evaluator, and its use for compiling iterative statements in LISP. —In: Conf. record of the 5th annual ACM symp. on principles of progr. languages. — N.Y.: Assoc. Computing Machinery, 1979, p. 195–202.Google Scholar
  18. 18.
    Itkin V.E. Logiko-termal'naya ekvivalentnost' skhem programm. — Kibernetika. Kiev, 1972, no.1, p. 5–27.Google Scholar
  19. 19.
    Kam J.B., Ullman J.D. Monotone data flow analysis frameworks. — Acta Informatica, 7, 1977, no.3, p. 305–324.Google Scholar
  20. 20.
    Kildall G.A. A unified approach to global program optimization. — In: Conf. record of ACM symp. on principles of progr. languages. (Boston, Mass., Oct. 1–3, 1973) — N.Y.: Assoc. Computing Machinery, 1973, p. 194–206.Google Scholar
  21. 21.
    Kleene S.C. Introduction to metamathematics. — N.Y.: Van Nostrand, 1952.Google Scholar
  22. 22.
    Letichevsky A.A. Ekvivalentnost' i optimizatsiya programm. —In: Nepomnyashchy (Ed) Teoriya programmirovaniya, Chast' I. — Novosisibirsk: Vychislitel'ny Tsentr SO AN SSSR, 1972, p. 166–180.Google Scholar
  23. 23.
    Lombardi L.A. Incremental computation. —In: Advances in computers, 8 — N.Y.: Academic Press, 1967.Google Scholar
  24. 24.
    Markov A.A. Teoriya algoritmov. —In: Trudy matem. instituta AN SSSR, 38. — M.: Izdatel'stvo AN SSSR, 1951, p. 176–189.Google Scholar
  25. 25.
    Mills H.D. Function semantics for sequential programs. —In: Lavington S.H. (Ed) Information processing 80. Proceedings of IFIP Congress 80. Participants edition. — Amsterdam a.o.: North-Holland, 1980, p. 241–250.Google Scholar
  26. 26.
    Ostrovsky B.N. Avtomaticheskoe postroenie yazykovo-orientirovannykh analizatorov metodom smeshannykh vychisleniy. —In: Avtomatizatsiya proizvodstva paketov prikladnykh programm (avtomatizatsiya proizvodstva translyatorov). Tezisy dokladov. — Tallin: Tallinsky politekhnichesky institut, 1980, p. 172–173.Google Scholar
  27. 27.
    Pagan F.G. On interpreted-oriented definitions of programming languages. — Comp. journ. 19, 1976, no.2, p. 151–155.Google Scholar
  28. 28.
    Pepper P. A study on transformational semantics. —In: F.L. Bauer and M. Broy (Eds) Program construction. LNCS, vol.69. — Berlin a.o.: Springer, 1979, p. 322–405.Google Scholar
  29. 29.
    Post E. Finite combinatorial processes — formulation I. — Journ. symb. logic, 1, 1936, p. 103–105.Google Scholar
  30. 30.
    Sabelfeld V.K. Äquivalente Transformationen für Flussdiagramme. Acta Informatica, 10, 1978, S. 127–156.Google Scholar
  31. 31.
    Sabelfeld V.K. The logic-termal equivalence is polynomial-time decidable. — IPL, 10, no.2, 18 March 1980, p. 57–62.Google Scholar
  32. 32.
    Turchin V.F. A supercompiler system based on the language REFAL. — SIGPLAN Notices, 14, 1979, no.2, p. 46–54.Google Scholar
  33. 33.
    Turing A.M. On computable numbers, with an application to the Entscheidungsproblem. — Proc. London math. soc., ser.2, 42, 1936, p. 230–265; 43, 1937, p. 544–546.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Andrei P. Ershov
    • 1
  1. 1.Computing Center Siberian BranchUSSR Ac. Sci.NovosibirskUSSR

Personalised recommendations