The maximum k-flow in a network

  • Václav Koubek
  • Antonín Říha
Part of the Lecture Notes in Computer Science book series (LNCS, volume 118)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adámek, J. and Koubek, V., Remarks on flows in network with short paths. CMUC 12, 4(1971), 661–667.Google Scholar
  2. 2.
    Dinic, E.A., Algorithm for solution of a problem of maximal flow in a network with power estimation. Soviet Math. Dokl. 11(1970), 1277–1280.Google Scholar
  3. 3.
    Ford, L.R. and Fulkerson, D.R., Flows in networks. Princeton University, New Jersey, 1962.Google Scholar
  4. 4.
    Galil, Z., A new algorithm for the maximal flow problem. Proc.19th IEEE Symp. on Found. Comp. Sci., Ann-Arbor, Mich., October 1978, 231–245.Google Scholar
  5. 5.
    Galil, Z. and Naamad, A., Network flow and generalized path compression. Proc. 11th ACM Symp. on Theory of Comp., 1979, 13–26.Google Scholar
  6. 6.
    Karzanov, A.V., Determining the maximal flow in a network by the method of preflows. Soviet Math. Dokl. 15(1974), 434–437.Google Scholar
  7. 7.
    Lovász, L., Neumann-Lara, V. and Plummer, M., Mengerian theorems for paths of bounded length. Perlodica Math. Hungarica, Vol.9(4), 1978, 269–276.Google Scholar
  8. 8.
    Tarjan, R.E., Recent developments in the complexity of combinatorial algorithms. Proc. 5th IBM Symp. on MFCS, IBM Japan, 1980, 1–28.Google Scholar
  9. 9.
    Adelson-Velskij, G.M., Dinic, E.A. and Karzanov, A.V., Potokovyje algoritmy/in Russian/.Nauka, Moskva, 1975.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Václav Koubek
    • 1
  • Antonín Říha
    • 1
  1. 1.Computational CentreCharles UniversityPraha 1Czechoslovakia

Personalised recommendations