Advertisement

A bin packing algorithm with complexity O(n log n) and performance 1 in the stochastic limit

  • Walter Knödel
Communications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 118)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.R. Garey, R.L. Graham, D.S. Johnson, On a number-theoretic bin packing conjecture. Colloquia Mathematica Societatis János Bolyai, 16. Combinatorics, 377-392, Keszthely 1976.Google Scholar
  2. 2.
    D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey, R.L. Graham, Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM J. Comp. Vol. 3, 299–325, 1974.Google Scholar
  3. 3.
    A.C. Yao, New algorithms for bin packing. J. Ass. Comp. Mach. Vol. 27, 207–227, 1980.Google Scholar
  4. 4.
    S.D. Shapiro, Performance of heuristic bin packing algorithms with segments of random length. Information and Control Vol. 35, 146–158, 1977.Google Scholar
  5. 5.
    M. Hofri, Two-dimensional packing, Expected performance of simple level algorithms. Information and Control Vol. 45, 1–17, 1980.Google Scholar
  6. 6.
    A.N. Kolmogoroff, Sulla determinazione empirica di una legge di distributione. Giorn. Ist. Ital. Attuari 4, 83–91, 1933.Google Scholar
  7. 7.
    W. Wetzel, M.D. Jöhnk, P. Naeve, Statistische Tabellen, 134, de Gruyter, Berlin, 1967.Google Scholar
  8. 8.
    M.R. Garey, D.S. Johnson, Computers and intractability, A Guide to the theory of NP-completeness, Freeman, San Francisco, 1979.Google Scholar
  9. 9.
    G.N. Frederickson, Probabilistic Analysis for simple one-and two-dimensional bin packing algorithms, Information processing letters, Vol. 11, 156–161, 1980.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Walter Knödel
    • 1
  1. 1.Institute of InformaticsUniversity of StuttgartGermany

Personalised recommendations