Advertisement

Homogeneity and completeness

  • B. Csákány
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 117)

Keywords

Automorphism Group Universal Algebra Relational Algebra Pattern Function Affine Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Babai — F. Pastijn, On semigroups with high symmetry, Simon Stevin, 52(1978), 73–84.Google Scholar
  2. [2]
    B. Csákány, Homogeneous algebras are functionally complete, Algebra Universalis, 11(1980), 149–158.Google Scholar
  3. [3]
    B. Csákány — T. Gavalcová, Finite homogeneous algebras, Acta Sci. Math. (Szeged), 42(1980), 57–65.Google Scholar
  4. [4]
    J. Demetrovics — L. Hannák — S.S. Marčenkov, Some remarks on the structure of P 3, C.R. Math. Rep. Acad. Sci. Canada, 2(1980), 215–219.Google Scholar
  5. [5]
    J. Demetrovics — L. Hannák — L. Rónyai, Prime-element algebras with transitive automorphism groups, C.R. Math. Rep. Acad. Sci. Canada, 3(1981), 19–22.Google Scholar
  6. [6]
    E. Fried — H.K. Kaiser — L. Márki, An elementary way for polynomial interpolation in universal algebras, Algebra Universalis, to appear.Google Scholar
  7. [7]
    E. Fried — A.F. Pixley, The dual discriminator function in universal algebra, Acta Sci. Math. (Szeged), 41(1979), 83–100.Google Scholar
  8. [8]
    B. Ganter — J. Płonka — H. Werner, Homogeneous algebras are simple, Fund. Math., 79(1973), 217–220.Google Scholar
  9. [9]
    M.I. Gould — G. Grätzer, Boolean extensions and normal subdirect powers of finite universal algebras, Math. Z., 99(1967), 16–25.Google Scholar
  10. [10]
    G. Grätzer, A theorem on doubly transitive permutation groups with application to universal algebras, Fund. Math., 53(1963), 25–41.Google Scholar
  11. [11]
    G. Grätzer, Universal Algebra, Van Nostrand, Princeton, 1968.Google Scholar
  12. [12]
    S.W. Jablonski — G.P. Gawrilow — W.B. Kudrjawzew, Boolesche Funktionen und Postsche Klassen, Akademie-Verlag, Berlin, 1970.Google Scholar
  13. [13]
    H.K. Kaiser — L. Márki, Remarks on a paper of L. Szabó and Á. Szendrei, Acta Sci. Math., 42(1980), 95–98.Google Scholar
  14. [14]
    S.S. Marčenkov, On closed classes of self-dual functions of many-valued logic (in Russian), Problemy Kibernet, 36(1979), 5–22.Google Scholar
  15. [15]
    S.S. Marčenkov, On homogeneous algebras (in Russian), Dokl. Akad. Nauk SSSR, 256(1981), 787–790.Google Scholar
  16. [16]
    S.S. Marčenkov — J. Demetrovics — L. Hannák, On closed classes of self-dual functions in P 3 (in Russian), Diskret. Analiz, 34(1980), 38–73.Google Scholar
  17. [17]
    E. Marczewski, Homogeneous algebras and homogeneous operations, Fund. Math., 56(1964), 81–103.Google Scholar
  18. [18]
    J. von Neumann, Theory of Self-Reproducing Automata, University of Illinois Press, Urbana and London, 1966.Google Scholar
  19. [19]
    P.P. Pálfy — L. Szabó — Á. Szendrei, Algebras with doubly transitive automorphism groups, in: Coll. Math. Soc. J. Bolyai, Vol. 28., Finite Algebra and Multiple-valued Logic, North-Holland Publ. Co., 1981, pp. 521–535.Google Scholar
  20. [20]
    P.P. Pálfy — L. Szabó — Á. Szendrei,Automorphism groups and functional completeness, Algebra Universalis, to appear.Google Scholar
  21. [21]
    J. Płonka, Diagonal algebras, Fund. Math., 58(1966), 309–321.Google Scholar
  22. [22]
    R. Pöschel, Homogeneous relational algebras are relationally complete, in: Coll. Math. Soc. J. Bolyai, Vol. 28., Finite Algebra and Multiple-valued Logic, North-Holland Publ. Co., 1981, pp. 587–601.Google Scholar
  23. [23]
    R.W. Quackenbush, The tringle is functionally complete, Algebra Universalis, 2(1972), 128.Google Scholar
  24. [24]
    R.W. Quackenbush, Some classes of idempotent functions and their compositions, Colloq. Math., 29(1974), 71–81.Google Scholar
  25. [25]
    I.G. Rosenberg, Completeness properties of multiple-valued logic algebras, in: Computer Science and Multiple-valued Logic, North-Holland Publ. Co., 1977, pp. 144–186.Google Scholar
  26. [26]
    G. Rousseau, Completeness in finite algebras with a single operation, Proc. Amer. Math. Soc., 18(1967), 1009–1013.Google Scholar
  27. [27]
    S.K. Stein, Homogeneous quasigroups, Pacific J. Math., 14(1964), 1091–1102.Google Scholar
  28. [28]
    L. Szabó — Á. Szendrei, Almost all algebras with triply transitive automorphism groups are functionally complete, Acta Sci. Math. (Szeged), 41(1979), 391–402.Google Scholar
  29. [29]
    Á. Szendrei, On the arity of affine modules, Colloq. Math., 38 (1977), 1–4.Google Scholar
  30. [30]
    E. Vármonostory, Relational pattern functions, in: Coll. Math. Soc. J. Bolyai Vol. 28., Finite Algebra and Multiple-valued Logic, North-Holland Publ. Co., 1981, pp. 753–758.Google Scholar
  31. [31]
    H. Werner, Eine Characterisierung funktional vollständiger Algebren, Arch. Math., 21(1970), 381–385.Google Scholar
  32. [32]
    H. Werner, Discriminator-Algebras, Akademie-Verlag, Berlin, 1978.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • B. Csákány
    • 1
  1. 1.Bolyai InstituteJózsef Attila UniversitySzegedHungary

Personalised recommendations