Advertisement

Quasi-equational logic for partial algeras

  • Peter Burmeister
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 117)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ABN 80.
    H. Andréka, P. Burmeister, I. Németi. Quasivarieties of partial algebras — A unifying approach towards a two-valued model theory for partial algebras. Preprint Nr. 557, Technische Hochschule Darmstadt, Fachbereich Mathematik, 1980.Google Scholar
  2. AN 76.
    H. Andréka, I. Németi. Generalization of variety and quasivariety concept to partial algebras through category theory. MKI Budapest, Preprint 1976/5; to appear in Dissertationes Mathematicae No. 204.Google Scholar
  3. B 70.
    P. Burmeister. Free partial algebras. J. reine u. angewandte Math. 241, 1970, pp. 75–86.Google Scholar
  4. B 71.
    P. Burmeister. Primitive Klassen partieller Algebren. Habilitationsschrift, Bonn, 1971.Google Scholar
  5. B 81.
    P. Burmeister. Partial algebras — Survey of a unifying approach towards a two-valued model theory for partial algebras. Preprint Nr. 582, Technische Hochschule Darmstadt, Fachbereich Mathematik, 1981.Google Scholar
  6. ChK 73.
    C. C. Chang, H. J. Keisler. Model Theory.North-Holland, 1973.Google Scholar
  7. C 65.
    P. M. Cohn. Universal Algebra. Harper & Row, 1965.Google Scholar
  8. E 69.
    H.-D. Ebbinghaus. Über eine Prädikatenlogik mit partiell definierten Prädikaten und Funktionen. Archiv f. math. Logik 12, 1969, pp. 39–53.Google Scholar
  9. Ed 73.
    G. A. Edgar. The class of topological spaces is equationally definable. Algebra universalis 3, 1973, pp. 139–146.Google Scholar
  10. GoM 81.
    J. A. Goguen, J. Meseguer. Completeness of many-sorted equational logic. Manuscript 1981.Google Scholar
  11. Hö 73.
    H. Höft. Weak and strong equations in partial algebras. Algebra universalis 3, 1973, pp. 203–215.Google Scholar
  12. J 78.
    R. John. Gültigkeitsbegriffe für Gleichungen in partiellen Algebren. Math. Zeitschrift 159, 1978, pp. 25–35.Google Scholar
  13. Mal 73.
    A. I. Mal'cev. Algebraic Systems. Springer-Verlag, 1973.Google Scholar
  14. NSa 77.
    I. Németi, I. Sain. Cone-implicational subcategories and some Birkhoff-type theorems. Contributions to Universal Algebra (Proc. Coll. Esztergom 1977) Colloq. Math. Soc. J. Bolyai, North Holland, to appear.Google Scholar
  15. Sł 68.
    J. Słomiński. Peano-algebras and quasi-algebras. Dissertationes Mathematicae (Rozprawy Mat.) 62, 1968.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Peter Burmeister
    • 1
  1. 1.Fachbereich Mathematik, AG 1Technische HochschuleDarmstadtFed. Rep. of Germany

Personalised recommendations