Analogies of PAL and COPY

  • Franz-Josef Brandenburg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 117)


The LIFO or pushdown principle and the FIFO or queue principle are compared in the framework of language theory. To this effect, languages which characteristically describe these principles are studied comparing the least cones or semiAFLs containing them. Although the classes of languages so obtained are different and often are incomparable, very interesting analogies are established between LIFO type languages and FIFO type languages. Thus our investigations show both, the common and the contrasting properties of LIFO and FIFO structures.


Language Theory Congruence Relation Storage Structure Characteristic Language Type Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Berstel, Transductions and Context-Free Languages. Teubner, Stuttgart,1979.Google Scholar
  2. 2.
    L. Boasson, Two iteration theorems for some families of languages, J. Comput. System Sciences 7, 583–596 (1973).Google Scholar
  3. 3.
    R.V. Book, S.A. Greibach, Quasi-realtime languages. Math. Systems Theory 4, 97–111 (1970).Google Scholar
  4. 4.
    R.V. Book, S.A. Greibach, and C. Wrathall, Reset machines. J. Comput. System Sciences 19, 256–276 (1979).Google Scholar
  5. 5.
    R.V. Book, M. Nivat, and M. Paterson, Reversal-bounded acceptors and intersections of linear languages. SIAM J. Computing 3, 283–295 (1974).Google Scholar
  6. 6.
    F.J. Brandenburg, Multiple equality sets and Post machines. J. Comput. System Sciences 21, 292–316 (1980).Google Scholar
  7. 7.
    F.J. Brandenburg, Three write heads are as good as k. Math. Systems Theory 14, 1–12 (1981).Google Scholar
  8. 8.
    F.J. Brandenburg, Analogies of certain families of languages arising from PAL and COPY. Report, University of Braunschweig (1980).Google Scholar
  9. 9.
    K. Culik II, A purely homomorphic characterization of recursively enumerable sets. J. Assoc. Comput. Mach. 26, 345–350 (1979).Google Scholar
  10. 10.
    J. Engelfriet and G. Rozenberg, Fixed point languages, equality languages and representation of recursively enumerable languages. J. Assoc. Comput. Mach. 27, 499–518 (1980).Google Scholar
  11. 11.
    S. Ginsburg, Algebraic and Automata Theoretic Properties of Formal Languages. North-Holland, Amsterdam 1975.Google Scholar
  12. 12.
    S. Ginsburg and S.A. Greibach, Principal AFL. J. Comput. System Sciences 4, 308–338 (1970).Google Scholar
  13. 13.
    S. Ginsburg and S.A. Greibach, Multitape AFA. J. Assoc. Comput. Mach. 16, 193–221 (1972).Google Scholar
  14. 14.
    S. Ginsburg and H.A. Harrison, One-way nondeterministic real-time list storage languages. J. Assoc. Comput. Mach. 15, 428–446 (1968).Google Scholar
  15. 15.
    S.A. Greibach, Full AFLs and nested iterated substitution. Inform. Control 16, 7–35 (1970).Google Scholar
  16. 16.
    S.A. Greibach, Remarks on blind and partially blind multicounter machines. Theoret. Comput. Science 7, 311–324 (1978).Google Scholar
  17. 17.
    M.A. Harrison, Introduction to Formal Language Theory. Addison-Wesley, Reading 1978.Google Scholar
  18. 18.
    R.B. Hull, Containment between intersection families of linear and reset languages. Ph. D. Thesis, Berkeley (1979).Google Scholar
  19. 19.
    D.E. Knuth, The Art of Computer Programming, Vol 1, Fundamental Algorithms. Addison-Wesley, Reading 1967.Google Scholar
  20. 20.
    S.R. Kosaraju, Real-time simulation of concatenable double-ended queues by double-ended queues. Proc. 11 ACM Symposium Theory of Computing, 346–351 (1979).Google Scholar
  21. 21.
    A. Salomaa, Equality sets for homomorphisms of free monoids. Acta Cybernetica 4, 127–139 (1978).Google Scholar
  22. 22.
    R. Siromoney, On equal matrix languages. Inform. Control 14, 135–151 (1969).Google Scholar
  23. 23.
    I. H. Sudborough, One-way multihead writing finite automata. Inform. Control 30, 1–20 (1976).Google Scholar
  24. 24.
    B. Vauquelin and P. Franchi-Zannettacci, Automates à file. Theoret. Comput. Science 11, 221–225 (1980).Google Scholar
  25. 25.
    R. Vollmar, Über einen Automaten mit Pufferspeicherung. Computing 5, 57–70 (1970).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Franz-Josef Brandenburg
    • 1
  1. 1.Institut für InformatikUniversität BonnBonnFederal Republic of Germany

Personalised recommendations