The complexity of automata and subtheories of monadic second order arithmetics

  • A. Włodzimierz Mostowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 117)


Finitary Automaton Boolean Combination Finite Tree Nondetermined Choice Deterministic Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Büchi J.R., On a decision method in restricted second ordre arithmetic, Proc. of the Int. Congr. on Logic, Math. and Phil. of Sc. 1960, Stanford Univ. Press, Stanford Calif. 1962.Google Scholar
  2. [2]
    Büchi J.R., Siefkes D., The Monadic second Order Theory of all countable ordinals, Lecture Notes in Math. 328, Decidable Theories II, 1973 pp. 89.Google Scholar
  3. [3]
    Karpiński M., Free structure tree automata. I. Equivalence, Bull de l'Academie des Sciences, vol. XXI, 1973, pp. 441–446.Google Scholar
  4. [4]
    Karpiński M., Free structure tree automata. II Nondeterministic and deterministic regularity, Vol. XXI, 1973, pp. 447–450.Google Scholar
  5. [5]
    McNaughton R., Testing and generating infinite sequences by a finite automaton. Inform. and Control 9, 1966, p. 521–530.Google Scholar
  6. [6]
    Meyer A.R., Weak Monadic Second Order Theory of Successor is Not Elementary Reoursive. Proc. Boston University Logic Coll. 1972–1973, Lecture Notes of Math. 453, 1975, p. 137–154.Google Scholar
  7. [7]
    Mostowski A.W., A note concerning the complexity of a decision problem for positive formulas in SkS, Les Arbres en Algebre et en programmation, 4-eme Colloque de Lille, p. 173–180.Google Scholar
  8. [8]
    Mostowski A.W., Nearly deterministic automata acceptation of infinite trees and a complexity of a weak theory of SkS, Les Arbres en algebre et en programmation, 5-eme Colloque de Lille, 1980, p. 54–62.Google Scholar
  9. [9]
    Mostowski A.W., Finite automata on infimite trees and subtheories of SkS, Les Arbres en Algebre et en programmation, 5-eme Colloque de Lille, 1980, p. 228–240Google Scholar
  10. [10]
    Mostowski A.W., Types of finite automata acceptances and subtheories of SkS, 3rd Symposium on Mathematical Foundations of Computer Science, Zaborów, January 21–26, 1980, ICS PAS reports, 411, 1980, Warszawa, p. 53–57.Google Scholar
  11. [11]
    Mostowski A.W., Positive properties of Infinite trees and nearly deterministic automata, Preprint No 38, Univ. of Gdańsk, p. 1–11, (ibidem also text of [7–9]).Google Scholar
  12. [12]
    Rabin M.O., Decidability of Second-Order Theories and Automata on Infinite Trees, Trans. of Amer. Math. Soc. 141, 1969, p. 1–35.Google Scholar
  13. [13]
    Rabin M.O., Decidability and Definiability of Second-Order Theories Actes, Congres Intern. Math. 1970, tome I, p. 239–244.Google Scholar
  14. [14]
    Rabin M.O., Weakly Definiable Relations and Special Automata, Math. Logic Foundations Set Theory, North Holland, 1970, p. 1–23.Google Scholar
  15. [15]
    Raceff C.W., The Emptiness and Complementation Problems for Automata on Infinite Trees, MIT 1972 Thesis.Google Scholar
  16. [16]
    Stupp J., The Latties Model is Recursive in the Orginal Model, 1975 Manuscript.Google Scholar
  17. [17]
    Thatcher J.W., Wright J.B., Generalised Finite Automata Theory with an Application to a decision Problem of Second Order Logic, Math. System theory, 2, 1968, p. 57–82.Google Scholar
  18. [18]
    Trachtenbrodt B.A. and Barsdin J.M., Finite Automata, Behavior and Synthesis (in Russian) Moscow 1970.Google Scholar
  19. [19]
    Wagner K., On ω-regular Sets, Inform. and Control, 43, 1979, p. 123–177.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • A. Włodzimierz Mostowski
    • 1
  1. 1.Institute of MathematicsUniversity of GdańskPoland

Personalised recommendations