Advertisement

Logical description of computation processes

  • E. Börger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 117)

Keywords

Decision Problem Turing Machine Logical Description Predicate Logic Horn Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. NB. Due to the lack of space we cite only papers from which all other references mentioned in this survey can be found.Google Scholar
  2. Aanderaa, S.O., Börger, E. [1981]: The equivalence of Horn and network complexity for Boolean functions. Acta Informatica (to appear)Google Scholar
  3. Aanderaa, S.O., Börger, E., Lewis, H.R. [1981]: Conservative reduction classes of Krom formulas. The Journ. of Symb. Logic (to appear)Google Scholar
  4. Börger, E. [1975]: On the construction of simple first-order formulae without recursive models. Proc. Coloquio sobra logica simbolica, Madrid, 9–24Google Scholar
  5. — [1979]: A new general approach to the theory of the many-one equivalence of decision problems for algorithmic systems. ZMLG 25, 135–162Google Scholar
  6. Börger, E., Kleine Büning, H. [1980]: The reachability problem for Petri nets and decision problems for Skolem arithmetic. Theoretical Computer Science 11, 123–143Google Scholar
  7. Dreben, B., Goldfarb, W.D. [1979]: The decision problem. ReadingGoogle Scholar
  8. Ershov, Yu.L. [1973]: Skolem functions and constructive models. Algebra y Logika 12, 644–654Google Scholar
  9. Ferrante, J., Rackoff, Ch.W. [1979]: The Computational Complexity of Logical Theories. Springer LNM 718Google Scholar
  10. Lewis, H.R. [1979]: Unsolvable classes of quantificational formulas. ReadingGoogle Scholar
  11. — [1980]: Complexity results for classes of quantificational formulas. JCSSGoogle Scholar
  12. Rödding, D., Börger, E. [1974]: The undecidability of ΛVΛ (0,4)-formulae with binary disjunctions. Journ. of Symb. Logic 39, 412–413Google Scholar
  13. Rödding, D., Schwichtenberg, H. [1972]: Bemerkungen zum Spektralproblem. ZMLG 18, 1–12Google Scholar
  14. Wirsing, M. [1977]: Das Entscheidungsproblem der Klasse von Formeln, die höchstens zwei Primformeln enthalten. manuscripta math. 22, 13–25Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • E. Börger
    • 1
  1. 1.Lehrstuhl Informatik IIUniversität DortmundDortmund 50

Personalised recommendations