Advertisement

Some algebraic aspects of recognizability and rationality

  • Magnus Steinby
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 117)

Keywords

Regular Language Quotient Algebra Tree Automaton Rational Subset Unary Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    BERSTEL, J., Transductions and context-free languages. — B. G. Teubner, Stuttart (1979).Google Scholar
  2. [2]
    COHN, P.M., Universal algebra. — Harper&Row, New York (1965).Google Scholar
  3. [3]
    EILENBERG, S., Automata, languages, and machines. Vol. A. — Academic Press, New York (1974).Google Scholar
  4. [4]
    EILENBERG, S. and J.B. WRIGHT, Automata in general algebras. — Information and Control 11 (1967), 452–470.Google Scholar
  5. [5]
    GÉCSEG, F. and M. STEINBY, The theory of tree automata. — Submitted for publication (1981).Google Scholar
  6. [6]
    GRÄTZER, G., Universal algebra, 2. ed., — Springer Verlag, New York (1979).Google Scholar
  7. [7]
    LESCANNE, P., Équivalence entre la famille des ensembles algébriques. — RAIRO Inform. Théor. Sér. Rouge 10 (1976), no. 8, 57–81.Google Scholar
  8. [8]
    MEZEI, J. and J.B. WRIGHT, Algebraic automata and context-free sets. — Information and Control 11 (1967), 3–29.Google Scholar
  9. [9]
    RABIN, M.O. and D. SCOTT, Finite automata and their decision problems. — IBM J. Res. Develop. 3 (1959), 114–125.Google Scholar
  10. [10]
    STEINBY, M., On definite automata and related systems. — Ann. Acad. Sc. Fenn., Ser. A I, 444 (1969).Google Scholar
  11. [11]
    STEINBY, M., Syntactic algebras and varieties of recognizable sets. — Les Arbres en Algebre et en Programmation, Proc. 4éme Coll. de Lille, Lille (1979), 226–240.Google Scholar
  12. [12]
    THATCHER, J.W. and J.B. WRIGHT, Generalized finite automata theory with an application to a decision problem of second order logic. — Math. Systems Theory 2 (1968), 57–81.Google Scholar
  13. [13]
    TRNKOVÁ, V. and J. ADÁMEK, On languages, accepted by machines in the category of sets. — Math. Found. Comput. Sci., Proc. 6th Symp., Tatranská Lomnica 1977, Lect. Notes Comput. Sci 53 (1977), 523–531.Google Scholar
  14. [14]
    TRNKOVÁ, V. and J. ADÁMEK, Tree-group automata. — Fundamentals of computation theory '79, Proc. Conf., Berlin/Wendisch-Rietz 1979, (1979), 462–468.Google Scholar
  15. [15]
    WERNER, H., Einführung in die allgemeine Algebra. — Bibliographisches Institut, Mannheim (1978).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Magnus Steinby
    • 1
  1. 1.Department of MathematicsUniversity of TurkuTurku 50Finland

Personalised recommendations