Moderately exponential bound for graph isomorphism

  • László Babai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 117)


Polynomial Time Planar Graph Permutation Group Colored Graph Graph Isomorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Babai, Monte-Carlo algorithms in graph isomorphism testing, preprint 1979.Google Scholar
  2. 2.
    —, Isomorphism testing and symmetry of graphs, in: Ann. Discr. Math. 8 /1980/ 101–109.Google Scholar
  3. 3.
    —, On the complexity of canonical labelling of strongly regular graphs, SIAM J. Comp. 9 /1980/ 212–216.Google Scholar
  4. 4.
    —, On the order of uniprimitive permutation groups, Ann. Math. 109 /1981/.Google Scholar
  5. 5.
    —, On the order of doubly transitive permutation groups, submittedGoogle Scholar
  6. 6.
    —, P.J. Cameron, P.P. Pálfy, On the order of primitive permutation groups with bounded nonabelian composition factors, in preparation.Google Scholar
  7. 7.
    —, P. Erdős, S.M. Selkow, Random graph isomorphism, SIAM J. Comp. 9 /1980/ 628–635.Google Scholar
  8. 8.
    —, D.Yu. Grigoryev, Isomorphism testing for graphs with bounded eigenvalue multiplicities, in preparation.Google Scholar
  9. 9.
    —, L. Ku<cera, Canonical labelling of graphs in linear average time, Proc. 20th IEEE FOCS Symp. /1979/ 39–46.Google Scholar
  10. 10.
    —, L. Lovász, Permutation groups and almost regular graphs, Studia Sci. Math. Hungar. 8 /1973/ 141–150.Google Scholar
  11. 11.
    P.J. Cameron, Finite permutation groups and finite simple groups, Bull. Lond. Math. Soc. 13 /1981/ 1–22.Google Scholar
  12. 12.
    N. Deo, J.M. Davis, R.E. Lord, A new algorithm for digraph isomorphism, BIT 17 /1977/ 16–30.Google Scholar
  13. 13.
    I.S. Filotti, J.N. Mayer, A polynomial-time algorithm for determining the isomorphism of graphs of fixed genus, Proc. 12th ACM Symp. Th. Comp. /1980/ 236–243.Google Scholar
  14. 14.
    M.L. Furst, J.E. Hopcroft, E.M. Luks, Polynomial time algorithms for permutation groups, Proc. 21st IEEE FOCS Symp. /1980/ 36–41.Google Scholar
  15. 15.
    M.K. Goldberg, A nonfactorial algorithm for testing isomorphism of two graphs, preprint 1981.Google Scholar
  16. 16.
    J.E. Hopcroft, R.E. Tarjan, Efficient planarity testing, J. ACM 21 /1974/ 549–568.Google Scholar
  17. 17.
    —,—, Isomorphism of planar graphs, in Complexity of Computations /Miller, Thatcher, eds./ Plenum Press, N.Y. 1972, 143–150.Google Scholar
  18. 18.
    —, J. Wong, Linear time algorithm for isomorphism of planar graphs, Proc. Sixth ACM Symp. Th. Comp. /1974/ 172–184.Google Scholar
  19. 19.
    R.M. Karp, Probabilistic analysis of a canonical numbering algorithm for graphs, Proc. Symp. Pure Math. 34, AMS 1979, 365–378.Google Scholar
  20. 20.
    D. Lichtenstein, Isomorphism for graphs embeddable on the projective plane, Proc. 12th ACM Symp. Th. Comp. /1980/ 218–224.Google Scholar
  21. 21.
    R.M. Lipton, The beacon set approach to graph isomorphism, SIAM J. Comp. 9 /1980/.Google Scholar
  22. 22.
    E.M. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial time, Proc. 21st IEEE FOCS Symp. /1980/ 42–49.Google Scholar
  23. 23.
    G.L. Miller, Isomorphism testing for graphs of bounded genus, Proc. 12th ACM Symp. Th. Comp. /1980/ 225–235.Google Scholar
  24. 24.
    P.P. Pálfy, On the order of primitive solvable groups, J. Algebra, submitted.Google Scholar
  25. 25.
    D.A. Suprunenko, R.F. Apatenok, Nilpotent irreducible groups of matrices over a finite field /Russian/, Doklady Akad. Nauk Belorus. SSR 5 /1961/ 535–537.Google Scholar
  26. 26.
    W.T. Tutte, A family of cubical graphs, Proc. Cambr. Phil. Soc. 43 /1947/ 459–474Google Scholar
  27. 27.
    A.J. Weir, Sylow p-subgroups of the classical groups over finite fields with characteristic prime to p, Proc. A.M.S. 6 /1955/ 529–533.Google Scholar
  28. 28.
    H. Wielandt, Finite Permutation groups, Acad. Press, London 1964.Google Scholar
  29. 29.
    V.N. Zemlyachenko, Canonical numbering of trees /Russian/, Proc. Seminar on Comb. Anal. at Moscow State Univ., Moscow 1970.Google Scholar
  30. 30.
    —, On algorithms of graph identification /Russian/, Questions of Cybernetics 15, Proc. 2nd All-Union Seminar on Combinat. Math., Moscow /1975/ 33–41.Google Scholar
  31. 31.
    —, Determination of isomorphism of graphs /Russian/, in Mathem. Problems of Modelling Complex Objects, Karelian Branch of the Acad. Sci. USSR, Petrozavodsk 1979, 57–64.Google Scholar
  32. 32.
    —, Polynomial algorithm of identification of almost all graphs /Russian/, Karelian Branch of the Acad. Sci. USSR, in print.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • László Babai
    • 1
  1. 1.Dept. AlgebraEötvös UniversityBudapestHungary

Personalised recommendations