Advertisement

First order dynamic logic with decidable proofs and workable model theory

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 117)

Keywords

Kripke Model Dynamic Logic Explicite Characterization Logical Axiom Strong Completeness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andréka, H.-Dahn, B.I.-Németi, I., On a proof of Shelah. Bulletin de l'Academie Polonais des Sciences (Series Math.) 27, 1976, pp.1–7.Google Scholar
  2. 2.
    Andréka,H.-Németi,I.-Sain,I., Henkin-type semantics for program schemes to turn negative results to positive. Fundamentals of Computation Theory, FCT'79 (Proc.Conf. Berlin 1979). Ed.: L.Budach, Akademie Verlag Berlin 1979. Band 2. pp.18–24.Google Scholar
  3. 3.
    Andréka,H.-Németi,I.-Sain,I., Completeness problems in verification of programs and program schemes. Mathematical Foundations of Computer Science MFCS'79 (Proc.Conf. Olomouc, Czechoslovakia 1979), Lecture Notes in Computer Science 74, Springer Verlag 1979. pp.208–218.Google Scholar
  4. 4.
    Bowen,K.A., Model theory for modal logic. Kripke models for modal predicate calculi. D.Reidel Publ.Co. 1979. pp.1–127.Google Scholar
  5. 5.
    Németi,I., A complete first order dynanic logic. Preprint, Math. Inst.Hung.Acad.Sci., 1980.Google Scholar
  6. 6.
    Paris,J.B.-Csirmaz,L., A property of 2-sorted Peano models and program verification. Preprint, Math.Inst.Hung.Acad.Sci., 1981.Google Scholar
  7. 7.
    Salwicki,A., Axioms of algorithmic logic univocally determine semantics of programs. Mathematical Foundations of Computer Science MFCS'80 (Proc.Conf. Rydzina 1980), Lecture Notes in Computer Science, Springer Verlag 1980.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • I. Sain
    • 1
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations