Context-free languages of infinite words as least fixpoints

  • Axel Poigné
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 117)


Fixpoint Theorem Forgetful Functor Empty Subset Left Factor Infinite Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ADJ-group: Some fundamentals of order algebraic semantics. MFCS '76, Lect. Notes in Comp. Sci. 45, 1976Google Scholar
  2. [2]
    Arnold,A., Nivat,M.: Formal computations of non deterministic recursive program schemes. Math. Syst. Th. 13, 1980Google Scholar
  3. [3]
    Back,J.: The semantics of unbounded non-determinism. ICALP '80, Lect. Notes in Comp. Sci. 85, 1980Google Scholar
  4. [4]
    Huwig,H.,Poigné,A.: Continuous and non-deterministic completions of algebras. 3rd Hungarian Comp. Sci. Conf., 1981Google Scholar
  5. [5]
    MacLane,S.: Kategorien. Berlin-Heidelberg-New-York 1972Google Scholar
  6. [6]
    Manes, E.G.: Algebraic theories. Berlin-Heidelberg-New-York 1976Google Scholar
  7. [7]
    Nivat,M.: Infinite words. Found. of Comp. Sci.III, ed: deBakker,J., van Leuwen,J., Amsterdam 1979Google Scholar
  8. [8]
    Nivat,M.: Mots infinie engendré par une grammaire algébrique. R.A.I.R.O. informatique theorique Vol. 11, 1977Google Scholar
  9. [9]
    Hennessy,M.C.B.,Plotkin,G.: Full abstraction of a simple programming language. MFCS '79, Lect. Notes in Comp. Sci. 74. 1979Google Scholar
  10. [10]
    Poigné,A.: Using least fixed points to characterize formal computations of non-deterministic equations. Proc. Formal. of Progr. Concepts, Peniscola, Lect. Notes in Comp. Sci. 105, 1981Google Scholar
  11. [11]
    Poigné,A.: A least fixpoint semantics of non-deterministic schemes. forthcomingGoogle Scholar
  12. [12]
    Schützenberger,M.P.: Push-down automata and context-free languages. Inf. and Contr. Vol 6, 1963Google Scholar
  13. [13]
    Courcelle,B.: Frontiers of infinite trees. RAIRO Inf.Theor. 12, 1978Google Scholar
  14. [14]
    Heilbrunner,S.: An algorithm for the solution of fixed-point equations for infinite words. RAIRO Inf. Theor. Vol 14, 1980Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Axel Poigné
    • 1
  1. 1.Informatik II Universität DortmundDortmund 50F.R.G.

Personalised recommendations