The equivalence problem for LL- and LR-regular grammars

  • Anton Nijholt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 117)


Equivalence Problem Regular Partition Formal Language Theory Nonterminal Symbol Pushdown Automaton 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aho, A. V. and Ullman, J. D. The Theory of Parsing, Translation, and Compiling, Vols. 1 and 2. Prentice Hall, Inc., Englewood Cliffs, N.J., 1972 and 1973.Google Scholar
  2. 2.
    Culik, K. and Cohen, R. LR-regular grammars — an extension of LR(k) grammars. J. Comput. System Sci. 7 (1973), 66–96.Google Scholar
  3. 3.
    Harrison, M. A. Introduction to Formal Language Theory. Addison-Wesley, Reading, Mass., 1978.Google Scholar
  4. 4.
    Harrison, M. A. and Havel, I. M. Strict deterministic grammars. J. Comput. System Sci. 7 (1973), 237–277.Google Scholar
  5. 5.
    Harrison, M. A. and Havel, I. M. Real-time strict deterministic grammars. SIAM J. Comput. 1 (1972), 333–349.Google Scholar
  6. 6.
    Harrison, M. A. Havel, I. M. and Yehudai, A. An equivalence of grammars through transformation trees. Theoret. Comput. Sci. 9 (1979), 173–206.Google Scholar
  7. 7.
    Hopcroft, J. E. and Ullman, J. D. Formal Languages and their Relation to Automata. Addison-Wesley, Reading, Mass., 1969.Google Scholar
  8. 8.
    Jarzabek, S. and Krawczyk, T. LL-regular grammars. Information Processing Letters 4 (1975), 31–37.Google Scholar
  9. 9.
    Korenjak, A. J. and Hopcroft, J. E. Simple deterministic languages. Conf. Record of 7th Annual Symp. on Switching and Automata Theory 1966, 36–46.Google Scholar
  10. 10.
    Nijholt, A. On the parsing of LL-regular grammars. In: Math. Foundations of Computer Sci., A. Mazurkiewicz (ed.), LNCS 45, Springer, Berlin, 1976, 446–452.Google Scholar
  11. 11.
    Nijholt, A. LL-regular grammars. Int. J. of Computer Math. 8 (1980), 303–318.Google Scholar
  12. 12.
    Nijholt, A. From LL-regular to LL(1) grammars. Report IR-61, Amsterdam, May 1980.Google Scholar
  13. 13.
    Nijholt, A. A framework for classes of grammars between the LL(k) and LR(k) grammars. TR No. 80-CS-25, McMaster University, Hamilton, 1980.Google Scholar
  14. 14.
    Olshansky, T. and Pnueli, A. A direct algorithm for checking equivalence of LL(k) grammars. Theoret. Comput. Sci. 4 (1977), 321–349.Google Scholar
  15. 15.
    Oyamaguchi, M., Honda, N. and Inagaki, Y. The equivalence problem for real-time strict deterministic languages. Information and Control 45 (1980), 90–115.Google Scholar
  16. 16.
    Poplawski, D. A. On LL-regular grammars. J. Comput. System Sci. 18 (1979), 218–227.Google Scholar
  17. 17.
    Rosenkrantz D. J. and Stearns, R. E. Properties of deterministic top-down grammars. Information and Control 17 (1970), 226–255.Google Scholar
  18. 18.
    Ukkonen, E. A decision method for the equivalence of some non-real-time deterministic pushdown automata. 12th Ann. S. on Theory of Computing, 1980, 29–38.Google Scholar
  19. 19.
    Wood, D. Some remarks on the KH algorithm for s-grammars. BIT 13 (1973), 476–489.Google Scholar
  20. 20.
    Wood, D. Lecture notes on top-down syntax analysis. J. of the Computer Society of India 8 (1978), 1–22.Google Scholar
  21. 21.
    Zubenko, V. V. Simple pushdown storage automata and the equivalence problem in certain classes of LL(π) grammars (in Russian). Theory and Practice of systems programming, Inst. Kibernet., Akad. Nauk Ukrain. SSR, Kiev, 1976.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Anton Nijholt
    • 1
  1. 1.AmsterdamThe Netherlands

Personalised recommendations