Advertisement

Classes of functions over binary trees

  • Hans Kleine Büning
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 117)

Keywords

Binary Tree Small Class Trivial Consequence Restrict Time Developmental Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Cobham, A.: The intrinsic computational complexity of functions, Proc. 1964 Intern. Congr. on Logic, 24–30Google Scholar
  2. 2).
    Cohors-Fresenborg,E.: Subrekursive Funktionenklassen über binären Bäumen. Dissertation, Münster 1971Google Scholar
  3. 3).
    Thompson,D.B.: Subrecursiveness:Machine-independent Notions of Computability in Restricted Time and Storage,MSTG(1972), 3–15Google Scholar
  4. 4).
    Wagner, K.: Bounded recursion and complexity classes.MFCS 1979, Lecture Notes 74Google Scholar

198

  1. 2.
    Rozenberg, G., Selective substitution grammars (towards a framework for rewriting systems). Part I: definitions and examples. EIK, 13 /1977/, 455–463.Google Scholar
  2. 3.
    Rozenberg, G. and Salomaa, A., The Mathematical Theory of L Systems. Academic Press, New York, 1980.Google Scholar
  3. 4.
    Rozenberg, G. and Wood, D., Context-free grammars with selective rewriting. Acta Informatica, 13/1980/, 257–268.Google Scholar
  4. 5.
    Salomaa, A., Formal Languages. Academic Press, New York, 1973.Google Scholar

333

  1. 5.
    A. Ehrenfeucht and G. Rozenberg, On the subword complexity of DOL languages with a constant distribution, Institute of Applied Mathematics and Computer Science, University of Leiden, The Netherlands, Technical Report No. 81–21, 1981.Google Scholar
  2. 6.
    K.P. Lee, Subwords of developmental languages, Ph.D. thesis, State University of New York at Buffalo, 1975.Google Scholar
  3. 7.
    G. Rozenberg and A. Salomaa, The mathematical theory of L Systems, Academic Press, London, New York, 1980.Google Scholar
  4. 8.
    A. Thue, Über unendliche Zeichenreihen, Norsk. Vid. Selsk. Skr. I Mat.-Nat.Kl. 7 (1906), 1–22.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Hans Kleine Büning
    • 1
  1. 1.Institut für mathematische Logik und GrundlagenforschungMünsterGermany

Personalised recommendations