A definition of the P = NP-problem in categories

  • H. Huwig
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 117)


Polynomial Time Idempotent Semigroup Deterministic Polynomial Time Primitive Recursive Function Kernel Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BGS]
    Baker,T. & Gill, J. & Solovay, R. “Relativization of the P = NP question”. SIAM Journal of Computing 4, 1975Google Scholar
  2. [CO]
    Cook,S. “The Complexity of Theorem Proving Procedures”, 3rd ACM Symposium on Theory of Computing, 1971, Seite 151–158Google Scholar
  3. [G]
    Grzegorczyk,A. “Some classes of recursive functions”, Rozprawy Matematyczne, Warszawa 1953Google Scholar
  4. [F]
    Fachini,E. and Maggiolo-Schettini, “A Hirarchy of Primitive Recursive Sequence Functions”, Informatique theoretique, Nr. 13, 1979Google Scholar
  5. [Ha,Ho]
    Hartmanis,J. & Hopcroft J. “Independence results in Computer Science SIGACT Newsletter 8, 1976Google Scholar
  6. [Hu]
    Huwig,H., “Beziehungen zwischen beschränkter syntaktischer und beschränkter primitiver Rekursion”, Dissertation, Berichtsreihe der Abteilung Informatik an der Universität Dortmund 25/76Google Scholar
  7. [Hu]
    Huwig,H., “Das P = NP-Problem in der Kategorie der kommutativen idempotenten Halbgruppen”, Habilitationsschrift, eingereicht bei der Universität Dortmund, 1980Google Scholar
  8. [HWI]
    von Henke, F., & Indermark, K. & Weihrauch K. “Hierarchies of primitive recursive word functions and transductions defined by automata”, Automata, Languages and Programming, 1972, North-Holland Publishing Company, Amsterdam-LondonGoogle Scholar
  9. [Li]
    Lipton,R.: “On the consistency of P = NP and fragments of arithmetic” FCT'79, Akademie Verlag BerlinGoogle Scholar
  10. [Ma]
    Makkai, M & Reyes,G., “First order category logic” Springer Verlag, 1977Google Scholar
  11. [Ra]
    Radziszowski,S. “Programmability and P = NP-Conjecture” Proceedings of FCT '77, Springer VerlagGoogle Scholar
  12. [Sco]
    Scott,D.“Some Definitional Suggestions for Automata Theory”,JCSS 1,1967Google Scholar
  13. [To]
    Thompson,D. “Subrecursiveness: Machine-Independent Notions of Computability in Restricted Time and Storage”, Mathematical Systems Theory, Vol. 6, No. 1, 1972.Google Scholar
  14. [Jo]
    Johnstone,P.T., “Topos Theory”, Academic Press, 1977Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • H. Huwig
    • 1
  1. 1.Informatik IIUniversität DortmundGermany

Personalised recommendations