Specifying algebraic data types by domain equations

  • H. -D. Ehrich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 117)


The paper provides the theoretical foundation for a new algebraic specification method, using parameterized specifications and algebraic domain equations, an algebraic analogon to the domain equations used in Scott's theory of data types. The main result is that algebraic domain equations always have an initial solution. Also, a parametric version of algebraic domain equations is investigated. In either case, there is a simple syntactic solution method.


Data Type Type Constructor Domain Equation Abstract Data Type Algebraic Specification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ADJ 77.
    Goguen, J.A./Thatcher, J.W./Wagner, E.G./Wright, J.B.: Initial Algebra Semantics and Continuous Algebras. Journal ACM 24,(1977), 68–95Google Scholar
  2. ADJ 78.
    Goguen,J.A./Thatcher,J.W./Wagner,E.G.: An Initial Algebra Approach to the Specification, Correctness, and Implementation of Abstract Data Types.Current Trends in Programming Methodology,Vol IV (R.T. Yeh,ed.).Prentice Hall, Englewood Cliffs 1978, 80–149Google Scholar
  3. BG 77.
    Burstall, R.M./Goguen, J.A.: Putting Theories Together to Make Specifications. Proc. 5th Int. Joint Conf. on Artificial Intelligence, MIT, Cambridge (Mass.), 1977Google Scholar
  4. BG 80.
    Burstall, R.M./Goguen, J.A.: The Semantics of CLEAR, a Specification Language. Proc. 1979 Copenhagen Winter School on Abstract Software Specifications (D. Bjørner,ed.). LNCS 86, Springer-Verlag, Berlin 1980, 292–331Google Scholar
  5. EH 79.
    Ehrich, H.-D.: On The Theory of Specification, Implementation, and Parameterization of Abstract Data Types. Bericht Nr. 82/79, Abtlg. Informatik,Univ. Dortmund 1979 (also to appear in Journal ACM)Google Scholar
  6. EL 79a.
    Ehrich, H.-D./Lohberger, V.G.: Parametric Specification of Abstract Data Types, Parameter Substitution, and Graph Replacements. Graphs, Data Structures, Algorithms (M. Nagl/H.-J. Schneider,eds.). Applied Computer Science 13,Hanser Verlag, München 1979, 169–182Google Scholar
  7. EL 79b.
    Ehrich, H.-D./Lohberger, V.G.: Constructing Specifications of Abstract Data Types by Replacements. Proc. Int. Workshop on Graph Grammars and Their Application to Computer Science and Biology (V. Claus/H. Ehrig/G. Rozenberg,eds.). LNCS 73, Springer-Verlag, Berlin 1979,180–191Google Scholar
  8. EKTWW 80a.
    Ehrig, H./Kreowski, H.-J./Thatcher, J.W./ Wagner, E.G./Wright, J.B.: Parameterized Data Types in Algebraic Specification Languages. Proc. 7th ICALP (J.W. deBakker/J. van Leeuwen,eds.) LNCS 85, Springer-Verlag, Berlin 1980, 157–168Google Scholar
  9. EKTWW 80b.
    Ehrig,H./Kreowski,H.-J./Thatcher,J.W./Wagner,E.G./Wright,J.B.: Parameter Passing in Algebraic Specification Languages. Internal Report, FB 20 TU Berlin, 1980Google Scholar
  10. KA 78.
    Kanda,A.: Data Types as Initial Algebras: a Unification of Scottery and ADJery. Proc. 19th FOCS 1978, 221–230Google Scholar
  11. LE 76.
    Lehmann,D.J.: Categories for Fixpoint Semantics. Proc.7th FOCS 1976, 122–126Google Scholar
  12. LS 77.
    Lehmann,D.J./Smyth,M.B.:Data Types. Proc 18th FOCS 1977, 7–12Google Scholar
  13. SC 71.
    Scott, D.S.:The Lattice of Flow Diagrams.Proc.Symp. on Semantics of Algorithmic Languages (E. Engeler,ed.).LNM 188, Springer-Verlag, Berlin 1971, 311–372Google Scholar
  14. SC 72a.
    Scott, D.S.: Lattice Theory,Data Types and Semantics.Formal Semanctics of Algorithmic Languages (R. Rustin,ed.).Prentice Hall, Englewood Cliffs 1972, 65–106Google Scholar
  15. SC 72b.
    Scott, D.S.: Continuous Lattices. Toposes, Algebraic Geometry and Logic (F.W. Lawvere,ed.). LNM 274,Springer-Verlag, Berlin 1972,97–136Google Scholar
  16. SC 76.
    Scott, D.S.: Data Types as Lattices. SIAM Journal of Computing 5 (1976), 522–587Google Scholar
  17. SP 77.
    Smyth,M.B./Plotkin,G.D.: The Category-Theoretic Solution of Recursive Domain Equations. Proc. 18th FOCS 1977, 13–17Google Scholar
  18. WA 75.
    Wand, M.: On the Recursive Specification of Data Types. Proc. 1st Int. Coll. on Category Theory Applied to Computation and Control (E.G. Manes,ed.). LNCS 25, Springer-Verlag, Berlin 1975, 214–217Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • H. -D. Ehrich
    • 1
  1. 1.Abt. InformatikUniv. DortmundDortmund 50

Personalised recommendations