The complexity of decision problems for finite-turn multicounter machines

  • Eitan M. Gurari
  • Oscar H. Ibarra
Session 15: A. Pnueci, Chairman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 115)


We exhibit a large class of machines with polynomial time decidable containment and equivalence problems. The machines in the class accept more than the regular sets. We know of no other class (different from the finite-state acceptors) for which the containment and equivalence problems have been shown polynomially decidable. We also discuss the complexity of other decision problems.


  1. 1.
    Baker, B. and Book, R., Reversal-bounded multipushdown machines, J. Comptr. and Syst. Sci. 8 (1974), 315–332.Google Scholar
  2. 2.
    Borosh, I. and Treybig, L., Bounds on positive integral solutions of linear Diophantine equations, Proc. Amer. Math. Soc. 55 (1976), 299–304.Google Scholar
  3. 3.
    Chan, T., Ph.D. Thesis (Cornell University), 1980.Google Scholar
  4. 4.
    Fischer, P., Meyer, A., and Rosenberg, A., Counter machines and counter languages, Math. Syst. Theory 2 (1968), 265–283.Google Scholar
  5. 5.
    Friedman, E. and Greibach, S., A polynomial time algorithm for deciding the equivalence problem for 2-tape deterministic finite state acceptors, to appear.Google Scholar
  6. 6.
    Galil, Z., Hierarchies of complete problems, Acta Informatica 6 (1976), 77–88.Google Scholar
  7. 7.
    Garey, M. and Johnson, D., "Computers and Intractability: A Guide to the Theory of NP-Completeness", H. Freeman, San Francisco, 1978.Google Scholar
  8. 8.
    Greibach, S., Remarks on the complexity of nondeterministic counter languages, Theoretical Comptr. Sci. 1 (1976), 269–288.Google Scholar
  9. 9.
    Greibach, S., An infinite hierarchy of context-free languages, J. ACM 16 (1969), 91–106.Google Scholar
  10. 10.
    Gurari, E., Transducers with decidable equivalence problem, TR-CS-79-4, University of Wisconsin-Milwaukee, (1979).Google Scholar
  11. 11.
    Gurari, E. and Ibarra, O., An NP-Complete number-theoretic problem, J. ACM 26 (1979), 567–581.Google Scholar
  12. 12.
    Hopcroft, J. and Ullman, J., "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, Reading, MA, 1979.Google Scholar
  13. 13.
    Ibarra, O., Reversal-bounded multicounter machines and their decision problems, J. ACM 25 (1978), 116–133.Google Scholar
  14. 14.
    Jones, N., Space-bounded reducibility among combinatorial problems, J. Comptr. and Syst. Sci. 11 (1975), 68–85.Google Scholar
  15. 15.
    Minsky, M., Recursive unsolvability of Post's problem of Tag and other topics in the theory of Turing machines, Annals of Math 74 (1961), 437–455.Google Scholar
  16. 16.
    Valiant, L., Decision procedures for families of deterministic push-down automata, Theory of Computation-Report No. 1, University of Warwick, Coventry, Great Britain, 1973.Google Scholar
  17. 17.
    Valiant, L., The equivalence problem for deterministic finite-turn pushdown automata, Inform. and Contr. 25 (1974), 123–133.Google Scholar
  18. 18.
    Valiant, L. and Patterson, M., Deterministic one-counter automata, J. Comptr. and Syst. Sci. 10 (1975), 340–350.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Eitan M. Gurari
    • 1
  • Oscar H. Ibarra
    • 2
  1. 1.Department of Computer Science SUNY at BuffaloAmherst
  2. 2.Department of Computer ScienceUniversity of MinnesotaMinneapolis

Personalised recommendations