Advertisement

On the (generalized) post correspondence problem with lists of length 2

  • A. Ehrenfeucht
  • G. Rozenberg
Session 13: A. Salomaa, Chairman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 115)

Keywords

Formal Language Free Monoids Descriptional Power Formal Language Theory Marked Instance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [BB]
    Book, R.V. and Brandenburg, F.J., Equality sets and complexity classes, SIAM J. of Comp., to appear.Google Scholar
  2. [C]
    Culik, K., II, A purely homomorphic characterization of recursively enumerable sets, J. of the ACM26, 345–450, 1979.Google Scholar
  3. [Cl]
    Claus, V., Die Grenze zwischen Entscheidbarkeit und Nichtentscheidbarkeit, Fernstudienkurs für die Fernuniversität Hagen, Open University Hagen, 1979.Google Scholar
  4. [CK]
    Culik, K., II and Karhumaki, J., On the equality sets for homomorphisms on free monoids with two generators, University of Waterloo, Techn.Rep. CS-79-17, 1979.Google Scholar
  5. [ER]
    Engelfriet, J. and Rozenberg, G., Fixed point languages, equality languages and representations of recursively enumerable languages, J. of the ACM, to appear.Google Scholar
  6. [EKR]
    Ehrenfeucht, A., Karhumaki, J. and Rozenberg, G., The (Generalized) Post Correspondence Problem with lists of length 2 is decidable, manuscript.Google Scholar
  7. [H]
    Harrison, M.A., Introduction to formal language theory, Addison-Wesley Publ., 1978.Google Scholar
  8. [HU]
    Hopcroft, J.E. and Ullman, J.D., Introduction to Automata Theory, Languages and Computation, Addison-Wesley Publ., 1979.Google Scholar
  9. [KS]
    Karhumaki, J. and Simon, I., A note on elementary homomorphisms and the regularity of equality sets, Bulletin of the EATCS 9, 1979.Google Scholar
  10. [Le]
    Lecerf, Y., Recursive insolubilité de l'equation generale de diagonalisation de deux momomorphisms de monoides libres ωx = ωx, Comptes rendus 257, 2940–2943, 1963.Google Scholar
  11. [P]
    Post, E.L., A variant of a recursively unsolvable problem, Bull. of the Am. Math. Soc., 52, 264–268, 1946.Google Scholar
  12. [S1]
    Salomaa, A., Formal languages, Academic Press, 1973.Google Scholar
  13. [S2]
    Salomaa, A., Equality sets for homomorphisms on free monoids, Acta Cybernetica-4, 127–139, 1978.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • A. Ehrenfeucht
    • 1
  • G. Rozenberg
    • 2
  1. 1.Department of Computer ScienceUniversity of Colorado at BoulderBoulderU.S.A.
  2. 2.Institute of Applied Mathematics and Computer ScienceUniversity of LeidenLeidenThe Netherlands

Personalised recommendations