Trees in Kripke models and in an intuitionistic refutation system

  • P. Miglioli
  • U. Moscato
  • M. Ornaghi
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 112)


Intuitionistic Logic Kripke Model Natural Deduction Completeness Theorem Intuitionistic Propositional Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.W. Beth, Semantic Construction of Intuitionistic Logic. Mededelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afb. Letterkunde, Nieuve Reeks, Deel 19, No. 11.Google Scholar
  2. 2.
    W. Bibel, Predicative Programming, Report of the Institut für Informatik, Technische Universität München, Munich, 1974.Google Scholar
  3. 3.
    C.L. Chang, R.C.T. Lee, Symbolic Logic and mechanical theorem proving (book), Academic Press Inc., New-York 1973.Google Scholar
  4. 4.
    R. Constable, Constructive Mathematics and automatic program writers, Proc. IFIP Congress 1971 (Lublijana), TA-2, North-Holland 1971.Google Scholar
  5. 5.
    G. Degli Antoni, P. Miglioli, M. Ornaghi, The synthesis of programs as an approach to the construction of reliable programs, Proc. of the International Conf. on proving and improving programs, Arc et Senans, July 1975, Huet, Kahn eds.Google Scholar
  6. 6.
    M.C. Fitting, Intuitionistic Logic, Model Theory and Forcing, (book), North-Holland 1969.Google Scholar
  7. 7.
    C. Goad, Computational uses of the manipulation of formal proofs, Stanford Dept. of Comp. Sci., Rep. n. STAN-CS-80-819, August 1980.Google Scholar
  8. 8.
    S. Goto, Program Synthesis from Natural Deduction Proofs, Int. Joint Conf. on Artificial Intelligence, Tokyo, 1979.Google Scholar
  9. 9.
    R. Kowalski, Logic for Problem Solving, (book), Elsevier North-Holland, 1979.Google Scholar
  10. 10.
    G. Kreisel, Some uses of proof-theory for finding computer programs, Notes for a talk in the Logical Symp. of Clermond-Ferrand, 1975, available as a manuscript.Google Scholar
  11. 11.
    S. Kripke, Semantical Analysis of Intuitionistic Logic I, in Formal Systems and Recursive Function, North-Holland, 1975.Google Scholar
  12. 12.
    P. Miglioli, M. Ornaghi, A purely logical computing model: the open proofs as programs, Istituto di Cibernetica dell'Università di Milano, internal rep. MIG 7, Sept. 1979.Google Scholar
  13. 13.
    P. Miglioli, M. Ornaghi, A logically justified model for non deterministic and parallel computations, Istituto di Cibernetica dell'Università di Milano, int. rep. MIG 8, 1978.Google Scholar
  14. 14.
    P. Miglioli, M. Ornaghi, Some models of computation from a unified proof-theoretical point of view (to appear).Google Scholar
  15. 15.
    U. Moscato, Intuizionismo e teoria della dimostrazione. Su un'estensione dei sistemi di refutazione aderente alla semantica dell'intuizionismo. Tesi di laurea, Università di Milano, A.A.1979/1980.Google Scholar
  16. 16.
    D. Prawitz, Natural deduction: a proof theoretical study, (book), Almqvist-Wiksell, 1965.Google Scholar
  17. 17.
    C.A. Smorynski, Applications of Kripke models, in S.A. Troelstra, Metamathematical investigation of Intuitionistic Arithmetic and Analysis, (book), Lect. Notes in Mathematics n.344, Springer-Verlag, 1973.Google Scholar
  18. 18.
    R. Smullyan, First order logic, (book), Springer, New York, 1968.Google Scholar
  19. 19.
    R. Statman, Intuitionistic propositional logic is polynomial-space complete, Theoretical Computer Science 9 (1979), North-Holland.Google Scholar
  20. 20.
    G. Bellin, Herbrand's theorem for calculi of sequents LK and LJ, Rep. of the University of Stockholm.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • P. Miglioli
    • 1
  • U. Moscato
    • 1
  • M. Ornaghi
    • 1
  1. 1.Istituto di Cibernetica dell'Università di MilanoItaly

Personalised recommendations