Grammars without erasing rules. the OI case

  • Bernard Leguy
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 112)


The problem of ε-rules in context-free languages is generalized to the tree-case. For context-free tree grammars, we distinguish three classes of erasing rules : incomplete rules, ε-rules and monadic ε-rules (i.e. rules like X(x2)→x1). For grammars with erasing rules of just the third class, erasing-free grammars can be obtained and a construction is provided. Other results are negative and we prove that generally erasing rules cannot be avoided.


Program Scheme Balance Tree Tree Grammar Terminal String Complete Grammar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. ARNOLD, M. DAUCHET, "Un théorème de duplication pour les fonēts algébriques", J. Comput. System Sci. 13 (1976), pp. 223–244.Google Scholar
  2. [2]
    A. ARNOLD, M. DAUCHET, "Foréts algébriques et homomorphismes inverses", Information and Control. 37 (1978), pp. 182–196.Google Scholar
  3. [3]
    A. ARNOLD, M. DAUCHET, "Théorie des magmoïdes", RAIRO inf. th. 12 (1978), no 3, pp. 235–257 et 13 (1979), no 2, pp. 135–154.Google Scholar
  4. [4]
    A. ARNOLD, M. NIVAT, "Non deterministic recursive program schemes", In "Fundamentals of computation theory", (1977), Poznam-Lectures Notes in Computer Sciences no 56, Springer-Verlag, pp. 12–21.Google Scholar
  5. [5]
    G. BOUDOL, "Langages polyadiques algébriques. Théorie des schémas de programme: Sémantique de l'appel par valeur", Thèse de 3 ème cycle, Paris VII (1975).Google Scholar
  6. [6]
    B. COURCELLE, "A representation of trees by languages", Th. Comput. Sci. 6 (1978), pp. 255–279 and 7 (1978) pp. 25–55.Google Scholar
  7. [7]
    J. ENGELFRIET and E.M. SCHMIDT, "Io and OI", J. Comput. System Sci. 15 (1977), pp. 328–353 and 16 pp. 67–99.Google Scholar
  8. [8]
    M.J. FISCHER, "Grammars with macro-like productions", 9 th IEE Symp. On switching and automata theory (1968), pp. 131–142.Google Scholar
  9. [9]
    I. GUESSARIAN, "Program transformation and algebraic semantics", Publication interne LITP 78/21 (1978), A paraître dans TCS.Google Scholar
  10. [10]
    B. LEGUY, "Réductions, transformations et classification des grammaines algébiques d'arbres". Thèse de 3 ème cycle, Lille (1980).Google Scholar
  11. [11]
    W.C. ROUNDS, "Mappings and grammars on trees", Math. Systems theory. 4 (1968), pp. 257–287.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Bernard Leguy
    • 1
  1. 1.Université de Lille IFrance

Personalised recommendations