Advertisement

Calcul du rang des ∑-arbres infinis regulers

  • G. Jacob
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 112)

Abstract

Let ∑ be a finite craded set. The regular ∑-trees can be encoded into data sequences, using the scalar iterative expressions (as in EXEL-language [1]). The complexity of scalar iterative expressions can be defined in various way and so it is for regular ∑-trees. Here, we present a method for calculating the "rank" of such a tree, with and without concatenation.

In the flow chart case, our algorithm allows to decide if a chart G is (syntactically) reducible to some GREn-chart. Recall that the request of Kosaraju [9] for a "structural characterization" of the GREn-charts is till now an open question.

Keywords

Nous Allons Nous Obtenons Nous Montrons Nous Donnons Obtient Ainsi 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    ARSAC J., NOLIN L., RUGGIU G., VASSEUR J.P., "Le système de Programmation EXEL", Revue technique Thompson-CSF, vol. 6, 3 (1974).Google Scholar
  2. [2]
    COUSINEAU G., "Trans formations de programmes itératifs", in Programmation, Proc. of the 2nd international symposium on Programming, B. Robinet Ed., Paris (1976-DUNOD) 53–74.Google Scholar
  3. [3]
    COUSINEAU G., "Arbres à feuilles indiciées et transfonmations de programmes", Thèse es Sci-Mathématiques, Université de Paris VII (1977).Google Scholar
  4. [4]
    COUSINEAU G., "An algebraic definition for control structures", Theoretical computer Science 12 (1980) 175–192.Google Scholar
  5. [5]
    BLOOM S.L., ELGOT C.C., "The existence and Construction of fnee iterative theories", J. Comput. Syst. Sci. 12 (1976) 305–318.Google Scholar
  6. [6]
    ELGOT C.C., BLOOM S.L., TINDELL R., "On the algebraic structure of Rooted Trees", J. Comput. Syst. Sci. 16 (1978) 362–399.Google Scholar
  7. [7]
    IANOV I.I., "The logical schemes of algorithms", Problemy Kibernet., 1 (1960) 82–140.Google Scholar
  8. [8]
    KASAI T., "Translatability of flowcharts into UHILE programs", J. Comput. Syst. Sci. 9 (1974) 177–195.Google Scholar
  9. [9]
    KOSARAJU R., "Analysis of structured programs", J. Comput. Syst. Sci., 9 (1974) 232–255.Google Scholar
  10. [10]
    JACOB G. "Structural Invariants fon some classes of structured orograms", MFCS 78, Zakopane (Poland); Lect-Notes in Comput. Sci. no 64.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • G. Jacob
    • 1
  1. 1.LITP et Université de Lille IVilleneuve D'Ascq Cedex

Personalised recommendations