On the algebraic specification of nondeterministic programming languages

  • M. Broy
  • M. Wirsing
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 112)


Different semantic models for a nondeterministic programming language are defined, analysed, and compared in the formal framework of algebraic specifications of programming languages by abstract types. Four abstract types are given representing choice ("erratic") nondeterminism, backtrack ("demonic") nondeterminism, unbounded ("angelic") nondeterminism and loose nondeterminism. The classes of algebras of these types represent classes of semantic models. A comparison of these classes of semantic models shows the connections and differences between the four different concepts of nondeterminism as found in programming languages.


Semantic Model Equivalent Model Abstract Type Abstract Data Type Gramming Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /Apt, Plotkin 81/.
    K.R. Apt, G.D. Plotkin: A Cook's Tour of Contable Noundeterminism. Submitted for publicationGoogle Scholar
  2. /Bauer, Wössner 81/.
    F.L. Bauer, H. Wössner: Algorithmische Sprache und Programmentwicklung. Berlin-Heidelberg-New York: Springer 1981, to appearGoogle Scholar
  3. /Broy 80/.
    M. Broy: Transformational Semantics for Concurrent Programs. IPL 11:2, October 1980, 87–91Google Scholar
  4. /Broy, Gnatz, Wirsing 78/.
    M. Broy, R. Gnatz, M. Wirsing: Semantics of Nondeterministic and Noncontinuous Constructs. In: F.L. Bauer, M. Broy (eds.): Program Construction, Marktoberdorf 78. LNCS 69 Google Scholar
  5. /Broy, Wirsing 80a/.
    M. Broy, M. Wirsing: Programming Languages as Abstract Data Types. In: M. Dauchet (ed.): Lille Colloque 80Google Scholar
  6. /Broy, Wirsing 80b/.
    M. Broy, M. Wirsing: Initial Versus Terminal Algebra Semantics for Partially Defined Abstract Types. Techn. Universität München, Institut für Informatik, TUMI 8018, Dezember 1980Google Scholar
  7. /Broy, Wirsing 80c/.
    M. Broy, M. Wirsing: From Enumeration to Backtracking. IPL 10:4, July 1980, 193–197Google Scholar
  8. /Broy et al. 80/
    M. Broy, H. Partsch, P. Pepper, M. Wirsing: Semantic Relations in Programming Languages, IFIP Congress 80Google Scholar
  9. /Dijkstra 76/.
    E.W. Dijkstra: A Discipline of Programming. Prentice Hall, Englewood Cliffs 1976Google Scholar
  10. /Floyd 67/.
    R.M. Floyd: Nondeterministic Algorithms. J. ACM 14, 1967, 636–644Google Scholar
  11. /Grätzer 68/.
    G. Grätzer: Universal Algebra. Princeton: Van Nostrand 1968Google Scholar
  12. /Harel, Pratt 78/.
    D. Harel, V.R. Pratt: Nondeterminism in Logics of Programs. Proc. 5th ACM Symp. on Principles of Programming Languages. Jan. 1978, 203–213Google Scholar
  13. /Hennessy, Plotkin 80/.
    M.C.B. Hennessy, G.D. Plotkin: A Term Model of CCS. In: P. Dembinski(ed.): MFCS 80. LNCS 88, 262–274Google Scholar
  14. /Kennaway, Hoare 80/.
    J.R. K. Kennaway, C.A.R. Hoare: A Theory of Nondeterminism. In: J. de Bakker, J.v.d. Leuwen (eds.): ICALP 80, LNCS 85Google Scholar
  15. /Manna 74/.
    Z. Manna: Mathematical Theory of Computation. New York: McGraw Hill 1974Google Scholar
  16. /McCarthy 63/.
    J. McCarthy: A Basis for a Theory of Computation. In: B. Bradfort, D. Hirschberg (eds.): Computer Programming and Formal Systems. Amsterdam: North-Holland 1963, 33–70Google Scholar
  17. /Milner 77/.
    R. Milner: Fully Abstract Models of Typed λ-calculi. TCS 4, 1977, 1–22Google Scholar
  18. /Nivat 80/.
    M. Nivat: Nondeterministic Programs: An Algebraic Overview. Invited paper, IFIP Congress 80Google Scholar
  19. /Park 80/.
    D. Park: On the Semantics of Fair Parallelism. In: D. Björner (ed.): Abstract Software Specification. LNCS 86, 504–526Google Scholar
  20. /Wirsing, Broy 80/.
    M. Wirsing, M. Broy: Abstract Data Types as Lattices of Finitely Generated Models. In: P. Dembinski (ed.): MFCS 80. LNCS 88 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • M. Broy
    • 1
  • M. Wirsing
    • 1
  1. 1.Institut für InformatikTechnische Universität MünchenMünchen 2

Personalised recommendations