Full approximability of a class of problems over power sets

  • G. Ausiello
  • A. Marchetti Spaccamela
  • M. Protasi
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 112)


Feasible Solution Knapsack Problem Variable Partitioning Elimination Rule Complete Subgraph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AMP]
    G.AUSIELLO, A.MARCHETTI SPACCAMELA, M.PROTASI: Combinatorial problems over power sets, Calcolo, Vol. 16, n. 4, 1979.Google Scholar
  2. [GJ]
    M.R.GAREY, D.S.JOHNSON: Computers and intractability. A guide to the theory of NP-completeness, Freeman and Company, 1979.Google Scholar
  3. [KS]
    B.KORTE, R.SCHRADER: On the existence of fast approximation schemes, Tech. Rep. 80163-OR, University of Bonn.Google Scholar
  4. [IK]
    O.H.IBARRA, C.E.KIM: Fast approximation algorithms for the knapsack and sum subset problems, J. ACM Vol. 22, n.4, 1975.Google Scholar
  5. [L]
    E.L.LAWLER: Fast approximation algorithms for knapsack problems, Proc. 18th FOCS, Long Beach, 1977.Google Scholar
  6. [M]
    S. MORAN: General approximation algorithms for some arithmetical combinatorial problems, Tech. Rep. 140, Technion, Haifa, 1978.Google Scholar
  7. [PM]
    A.PAZ, S.MORAN: NP-optimization problems and their approximations, Proc. 4th ICALP, Turku, 1977.Google Scholar
  8. [S]
    S. SAHNI: Approximate algorithms for the 0/1 knapsack problem, J ACM Vol. 22, n. 1, 1975.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • G. Ausiello
    • 1
  • A. Marchetti Spaccamela
    • 2
  • M. Protasi
    • 3
  1. 1.Istituto di AutomaticaUniversità di RomaRoma
  2. 2.IASI — CNRRoma
  3. 3.Istituto MatematicoUniversità dell'AquilaL'Aquila

Personalised recommendations