Infinitary relations

  • Maurice Nivat
Invited Lectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 112)


We have obtained a number of results concerning the topological closure of infinitary relations : in practice, at least for modeling the synchronization of concurrent processes, we shall use mainly infinitary rational relations. A forthcomming paper of the same author is devoted to theim definition and properties. The author has had very helpful discussions with A. Arnold, L. Boasson, F. Boussinot, G. Roncairol and G. Ruggin.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. ARNOLD and M. NIVAT Metric interpretations of infinite trees and semantics of non deterministic recursive programs. Theor. Comp. Sci., Vol. 11 (1980), 181–205.Google Scholar
  2. [2]
    J. BEAUQUIER and M. NIVAT Application of formal language theory to problems of security and synchronization, in Formal Language Theory (R. Book, éd.) Academic Press, New York, 1980.Google Scholar
  3. [3]
    L. BOASSON and M. NIVAT Adherences of languages, Jour. Comp. Syst. Sci., Vol. 20 (1980), 285–309.Google Scholar
  4. [4]
    S. EILENBERG Automata, Languages and Machines, Vol. A, Academic Press, New York, 1974.Google Scholar
  5. [5]
    M. NIVAT Systèmes de transition permanents et équitables, Research Report no 2577, Laboratoire Central de Recherches Thomson-CSF, Orsay, 1980.Google Scholar
  6. [6]
    M. NIVAT Infinitary languages (to appear).Google Scholar
  7. [7]
    M. NIVAT Synchronization et multimorphismes (to appear).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Maurice Nivat
    • 1
  1. 1.Laboratoire d'Informatique Théorique et Programmation I.N.R.I.A.Domaine de Voluceau RocquencourtChesnayFrance

Personalised recommendations