A birkhoff-like theorem for algebraic classes of interpretations of program schemes

For calvin elgot
  • José Meseguer
Invited Lectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 107)


Algebraic Theory Free Algebra Algebraic Semantic Equational Logic Finite Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Andréka, H. and I. Németi. Applications of Universal Algebra, Model Theory, and Categories in Computer Science. Comput. Ling. Comput. Lang., 1980. Survey and bibliography, parts I–III. Part I in CL&L Vol. XIII (1979), Part II in CL&L Vol. XIV, Part III as Preprint Math. Inst. Hung. Acad. Sci. 1980.Google Scholar
  2. [2]
    Arnold, A. and Nivat, M. Nondeterministic Recursive Program Schemes. In Proc. FCT '77, pages 12–21. Springer LNCS 56, 1977.Google Scholar
  3. [3]
    Bekić, H. Definable Operations in General Algebras, and the Theory of Automata and Flowcharts. IBM Vienna, 1969.Google Scholar
  4. [4]
    Birkhoff, G. On the Structure of Abstract Algebras. Proc. Cambridge Phil. Soc. 29:441–464, 1935.Google Scholar
  5. [5]
    Bloom, S.L. Varieties of Ordered Algebras. JCSS 13:200–212, 1976.Google Scholar
  6. [6]
    Courcelle, B. Infinite Trees in Normal Form and Recursive Equations Having a Unique Solution. Math. Systems Theory 13:131–180, 1979.Google Scholar
  7. [7]
    Courcelle, B. and Guessarian, I. On Some Classes of Interpretations. JCSS 17:388–413, 1978.Google Scholar
  8. [8]
    Courcelle, B. and Nivat, M. Algebraic Families of Interpretations. In 17th IEEE Symp. FOC, pages 137–146. IEEE, 1976.Google Scholar
  9. [9]
    Courcelle, B. and Nivat, M. The Algebraic Semantics of Recursive Program Schemas. In Proc. Symp. MFCS '78, pages 16–30. Springer LNCS 64, 1978.Google Scholar
  10. [10]
    Courcelle, B. and Raoult, J.C. Completions of Ordered Magmas, Manuscript. 1977. To appear in Fundamenta Informaticae.Google Scholar
  11. [11]
    Elgot, C.C. Monadic Computation and Interative Algebraic Theories. In Logic Colloquium '73, North-Holland, Amsterdam, 1975.Google Scholar
  12. [12]
    Goguen, J.A., Thatcher, J.W., Wagner, E.G., and Wright, J.B. Initial Algebra Semantics and Continuous Algebras. JACM 24:68–95, 1977.CrossRefGoogle Scholar
  13. [13]
    Goguen, J.A. Some Ideas in Algebraic Semantics. In Proc. 3rd. IBM Symp. on Mathematical Foundations of Computer Science. IBM Japan, 1978.Google Scholar
  14. [14]
    Goguen, J.A. and Thatcher, J. Initial Algebra Semantics. In Proc. 15th Ann. IEEE Symp. SWAT, pages 63–77. IEEE, 1974.Google Scholar
  15. [15]
    Guessarian, I. Schémas de Programme Récursifs Polyadiques: Equivalence Sémantique et Classes d'Interprétations. These d'Etat, Université Paris VII, 1975.Google Scholar
  16. [16]
    Guessarian, I. Les Tests et Leur Characterization Syntaxique. RAIRO Informatique Théorique 11:133–156, 1977.Google Scholar
  17. [17]
    Guessarian, I. Program Transformations and Algebraic Semantics. Theoretical Computer Science 9:39–65, 1979.Google Scholar
  18. [18]
    Guessarian, I. Algebraic Semantics [cours de DEA]. Technical Report, UER Mathématiques, Université Paris 7, 1980. LITP Report #80-13.Google Scholar
  19. [19]
    Indermark, K. Schemas with Recursion on Higher Types. In Proc. MFCS '76, pages 352–358. Springer LNCS, 1976.Google Scholar
  20. [20]
    Lawvere, F.W. Functorial Semantics of Algebraic Theories. PhD thesis, Columbia University, 1963. also Proc. Ntl. Acad. Sci. USA 50, 1963, pp. 869–872.Google Scholar
  21. [21]
    Lehmann, D. On the Algebra of Order. In Proc. IEEE Symp. Found. Computer Sci., Ann Arbor. IEEE, 1978.Google Scholar
  22. [22]
    Markowsky, G. and Rosen, B.K. Bases for Chain-Complete Posets. IBM J. Res. Development 20:138–147, 1976.Google Scholar
  23. [23]
    Meseguer, J. On Order-Complete Universal Algebra and Enriched Functorial Semantics. In Proc. FCT '77, pages 294–301. Springer LNCS 56, 1977.Google Scholar
  24. [24]
    Meseguer, J. A Birkhoff Variety Theorem for Continuous Ordered Algebras. Notices AMS 25(5):A–482–483, 1978.Google Scholar
  25. [25]
    Meseguer, J. Completions, Factorizations and Colimits for w-posets. 1978. to appear in Colloquia Mathematica Societatis Janos Bolyai XXVI [also UCLA Comp. Sci. Dept. Theor. Comput. Rep. #13].Google Scholar
  26. [26]
    Meseguer, J. Varieties of Chain-Complete Algebras. Journal of Pure and Applied Algebra 19:347–383, 1980.Google Scholar
  27. [27]
    Milner, R. Flowgraphs and Flow Algebras. Technical Report Computer Science Report CSR-5-77, University of Edinburgh, 1977. also: J. ACM, vol. 26, 794–818, 1979.Google Scholar
  28. [28]
    Nivat, M. Langages Algébriques sur le Magma Libre et Semantique des Schémas de Programme. In Automata, Languages and Programming,. North-Holland, Amsterdam, 1973.Google Scholar
  29. [29]
    Nivat, M. On the Interpretation of Polyadic Recursive Schemes. In Symposia Mathematica, 15,. Academic Press, 1975.Google Scholar
  30. [30]
    Scott, D. The Lattice of Flow Diagrams. Springer LNM 188:311–366, 1971.Google Scholar
  31. [31]
    Wagner, E.G., Wright, J.B., Goguen, J.A., Thatcher, J.W. Some Fundamentals of Order-Algebraic Semantics. In Proc. MFCS '76, pages 153–168. Springer LNCS 45, 1976.Google Scholar
  32. [32]
    Wright, J.B., Wagner, E.G., and Thatcher, J.W. A Uniform Approach to Inductive Posets and Inductive Closure. Theor. Comp. Sci. 7:57–77, 1978.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • José Meseguer
    • 1
  1. 1.Computer Science LaboratorySRI InternationalMenlo ParkUSA

Personalised recommendations