Skip to main content

Viscous transonic flow over airfoils

  • Contributed Papers
  • Conference paper
  • First Online:
Seventh International Conference on Numerical Methods in Fluid Dynamics

Part of the book series: Lecture Notes in Physics ((LNP,volume 141))

  • 179 Accesses

Abstract

The TSFOIL small disturbance potential code is coupled to Green's lag entrainment method to compute transonic separated flows over airfoils. Green's equation serves as a viscous tangency condition for the TSFOIL code, eliminating an iterative procedure between the viscous and inviscid flows. The method is applied to the case of the NASA Supercritical Airfoil 12 and the 18% Circular Arc Airfoil, the latter with severe separation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Le Balleur, J., “Couplage Visqueux-Non Visqueux: Méthode Numérique et Applications Aux Écoulements Bidimensionnels Transsoniques et Supersoniques”, Rech. Aerosp. Mar–Apr, 1978.

    Google Scholar 

  2. Melnik, R., “Recent Developments in a Boundary Layer Theory for Computing Viscous Flows over Airfoils”, 4th US-FRG Meeting, BMVg-FBWT 70.31, 1979.

    Google Scholar 

  3. Collyer, M., and Lock, R., “Prediction of Viscous Effects in Steady Transonic Flows Past an Airfoil”, Aero. Quart., Vol. 30, Part 3, 1979.

    Google Scholar 

  4. Green, J., Weeks, D., and Brooman, J., “Prediction of Turbulent Boundary Layers and Wakes in Incompressible Flow by a Lag-Entrainment Method”, RAE Reports and Memoranda 3791, 1973.

    Google Scholar 

  5. Bradshaw, P., and Ferriss, D., “Calculation of Boundary Layer Development using Turbulent Energy Equation; Compressible Flow on Adiabatic Walls”, J. Fluid Mech., Vol. 46, 1971.

    Google Scholar 

  6. East, L., Smith, P., and Merryman, P., “Prediction of the Development of Separated Turbulent Boundary Layers by the Lag-Entrainment Method”, RAE Report 77046, 1977.

    Google Scholar 

  7. Murman, E., Bailey, R., and Johnson, M., “TSFOIL-A Computer Code for Two-Dimensional Transonic Calculations, Including Wind Tunnel Wall Effects and Wave-Drag Evaluation”, NASA Report SP347, 1975.

    Google Scholar 

  8. Yoshihara, H., “Formulation of the 3D Transonic Unsteady Aerodynamic Problem”, AFFDL TR-79-3030, 1979.

    Google Scholar 

  9. Holst, T., “A Fast Conservative Algorithm for Solving the Transonic Full-Potential Equation”, AIAA Paper 79-1456, 1979.

    Google Scholar 

  10. Yoshihara, H., “Fixes to the 3D Transonic Small Disturbance Theory”, Convair Report CASD-ERR-75-012, 1975.

    Google Scholar 

  11. McDevitt, J., Levy, L., and Deiwert, S., “Transonic Flows about a Thick Circular-Arc Airfoil”, AIAA Journal, Vol. 14, No. 5, May 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

W. C. Reynolds R. W. MacCormack

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag

About this paper

Cite this paper

Wai, J.C., Yoshihara, H. (1981). Viscous transonic flow over airfoils. In: Reynolds, W.C., MacCormack, R.W. (eds) Seventh International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, vol 141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-10694-4_64

Download citation

  • DOI: https://doi.org/10.1007/3-540-10694-4_64

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10694-4

  • Online ISBN: 978-3-540-38624-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics