Advertisement

Analytic structure of high Reynolds number flows

  • Rudolf H. Morf
  • Steven A. Orszag
  • Daniel I. Meiron
  • Maurice Meneguzzi
  • Uriel Frisch
Contributed Papers
Part of the Lecture Notes in Physics book series (LNP, volume 141)

Keywords

Direct Numerical Simulation High REYNOLDS Number Vortex Line Vortex Sheet Inviscid Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker Jr., G. A. 1975 Essentials of Padé Approximants, Academic Press, New York.Google Scholar
  2. Bender, C. & Orszag, S.A. 1978 Advanced Mathematical Methods for Scientists and Engineers, McGraw Hill, New York.Google Scholar
  3. Gaunt, D. S. & Guttmann, A. J. 1974 in Phase Transitions and Critical Phenomena (ed. C. Domb and M. S. Green), Vol. 3, p. 191, Academic Press, London.Google Scholar
  4. Meiron, D.I., Baker G. R. & Orszag, S.A. 1980 to appear.Google Scholar
  5. Morf, R.H., Orszag, S.A. & Frisch, U. 1980 Phys. Rev. Lett. 44, 572.CrossRefGoogle Scholar
  6. Moore, D. W. 1979 Proc. Roy. Soc. London, Ser. A 365, 105.Google Scholar
  7. Orszag, S. A. & Tang, C.M. 1979 J. Fluid Mech. 90, p. 129.Google Scholar
  8. Orszag, S. A. 1974, in Computing Methods in Applied Sciences (ed. R. Glowinski and J. L. Lions), part 2, p. 150, Springer, BerlinGoogle Scholar
  9. Pouquet A. 1978 J. Fluid Mech. 88, 1.Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Rudolf H. Morf
    • 1
  • Steven A. Orszag
    • 2
  • Daniel I. Meiron
    • 2
  • Maurice Meneguzzi
    • 3
  • Uriel Frisch
    • 4
  1. 1.RCA LaboratoriesZurichSwitzerland
  2. 2.Dept. Math.CambridgeUSA
  3. 3.C.N.R.S., Section d'AstrophysiqueC.E.N.SaclayFrance
  4. 4.C.N.R.S. Observatoire de NiceNiceFrance

Personalised recommendations